scholarly journals Investigation on the Creep Failure Mechanism of Sandy Mudstone Based on Micromesoscopic Mechanics

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xinshuai Shi ◽  
Hongwen Jing ◽  
Weiqiang Chen ◽  
Yuan Gao ◽  
Zhenlong Zhao

In this paper, scanning electron microscope (SEM) tests and 3D scanning technologies were adopted to investigate the creep failure mechanism of sandy mudstone from a micromesoscopic view. The SEM test results showed that the fracture surface micromorphology of the specimens that suffered creep loading was more fractured and rougher. It was also found by the fractal analysis of the SEM microscopic images that the fractal dimensions of the creep failure specimens were larger than those of the uniaxial compression failure, indicating that the creep damage increased the irregularity and a larger degree of roughness fluctuation. The 3D scanning technologies combining with the 3D reconstruction methods proved that the crack expansion path of crept specimens was more complicated, showing a more prominent asperity height and slope angle. Finally, a mesostrain dilating microelement model of the sandy mudstone specimen’s fracture surface was proposed to prove that the dilatancy effect would be more pronounced in the creep process.

2020 ◽  
Vol 29 (7) ◽  
pp. 1117-1137 ◽  
Author(s):  
Wenlin Feng ◽  
Chunsheng Qiao ◽  
Shuangjian Niu ◽  
Zhao Yang ◽  
Tan Wang

The experimental results show that the creep properties of the rocks are affected by the initial damage, and the damage evolution also has a significant impact on the time-dependent properties of the rocks during the creep. However, the effects of the initial damage and the damage evolution are seldom considered in the current study of the rocks' creep models. In this paper, a new nonlinear creep damage model is proposed based on the multistage creep test results of the sandstones with different damage degrees. The new nonlinear creep damage model is improved based on the Nishihara model. The influences of the initial damage and the damage evolution on the components in the Nishihara model are considered. The creep damage model can not only describe the changes in three creep stages, namely, the primary creep, the secondary creep, and the tertiary creep, but also reflect the influence of the initial damage and the damage evolution on creep failure. The nonlinear least squares method is used to determine the parameters in the nonlinear creep damage model. The consistency between the experimental data and the predicted results indicates the applicability of the nonlinear damage model to accurately predict the creep deformation of the rocks with initial damage.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qingzi Luo ◽  
Xiaoping Chen

A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibilityCa/Ccis almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.


Author(s):  
Dianyin Hu ◽  
Rongqiao Wang

GH4133B is a nickel-base superalloy which was developed for use in the manufacture of aero-engine turbine disks and other high-temperature components. Since these components are operated at high temperature and under cyclic loading, damage resulting from fatigue-creep interaction is the main factor. The situation is often simulated in laboratories at high temperature low-cycle fatigue. The interactive effect between different loading levels should be considered. The fatigue-creep experiments for alloy GH4133B at 600 Celsius degree have been carried out at continuous cyclic creep (CF) loading to investigate the interaction of creep damage and fatigue damage. Fracture surfaces are examined under the scanning electron microscope (SEM). Then a nonlinear fatigue-creep failure criterion function proposed by Hongyin Mao is employed to fit the experimental data. The probabilistic model of GH4133B under CF loading is established based on the deterministic failure function. Firstly, the random variables influencing the fatigue-creep life and values of the distribution parameters are investigated. Then fatigue-creep damage interaction is discussed and a linear damage accumulation rule is considered, according to which the limit state function used to express the probability of failure is proposed. Lastly, reliability analysis under fatigue-creep failure is proceeded by applying analytical and simulation methods. Furthermore, the random variable with low sensitivity index through the sensitivity analysis can be treated as deterministic parameter during the reliability analysis and reliability design in order to improve the computing efficiency.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2349 ◽  
Author(s):  
Hongwei Zhou ◽  
Di Liu ◽  
Gang Lei ◽  
Dongjie Xue ◽  
Yang Zhao

The use of salt rock for underground radioactive waste disposal facilities requires a comprehensive analysis of the creep-damage process in salt rock. A computer-controlled creep setup was employed to carry out a creep test of salt rock that lasted as long as 359 days under a constant uniaxial stress. The acoustic emission (AE) space-time evolution and energy-releasing characteristics during the creep test were studied in the meantime. A new creep-damage model is proposed on the basis of a fractional derivative by combining the AE statistical regularity. It indicates that the AE data in the non-decay creep process of salt rock can be divided into three stages. Furthermore, the authors propose a new creep-damage model of salt rock based on a fractional derivative. The parameters in the model were determined by the Quasi-Newton method. The fitting analysis suggests that the new creep-damage model provides a precise description of full creep regions in salt rock.


2020 ◽  
Vol 57 (10) ◽  
pp. 1617-1621
Author(s):  
Shuangfeng Guo ◽  
D.V. Griffiths

This note presents results of stability analyses of two-layer undrained slopes by the finite element method. The study focuses on the circumstances under which either deep or shallow failure mechanisms occur, as a function of the strength ratio of the layers, slope angle, and foundation depth ratio. Improved knowledge of the location of the critical failure mechanism(s) in two-layer systems will give engineers better insight into where to focus their attention in terms or remediation or reinforcement to preserve stability.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenkai Ru ◽  
Shanchao Hu ◽  
Jianguo Ning ◽  
Jun Wang ◽  
Qingheng Gu ◽  
...  

During the mining of the shallow-buried and close-distance multiple coal seam, the rheological failure of the surrounding weakly cemented soft rock of the roadway in the lower coal seam under the concentrated stress is very rare. However, the stress on the roof of the upper coal seam is transmitted down through the residual pillar, resulting in this situation. Taking the Gaojialiang coal mine which is located in the mining areas of western China as the research object, the failure mechanism of the roadway roof under the residual coal pillar in the shallow-buried and close-distance multiple seam is studied in combination with field monitoring and numerical simulation. Furthermore, suggestions on the roadway support under such geological conditions are proposed. The results show that the residual coal pillar in the working face of the lower coal seam gradually collapses during the mining of the shallow-buried and close-distance multiple coal seam. The concentrated stress transferred by the coal pillar increases further, which makes the roof stress of the lower coal seam roadway to increase continuously. In addition, the stress of the roadway roof also increases further due to the rotation of the broken rock above the goaf, and the peek region of stress moves to the nongoaf area. Combining the heavy concentrated stress and weakly cemented property, the shallow-buried surrounding rock shows rheological behavior and failure. Therefore, we must pay more attention on the creep failure of the roadway roof under the action of the residual coal pillar even in the shallow-buried coal seam.


Author(s):  
Nak Hyun Kim ◽  
Yun Jae Kim ◽  
Catrin M. Davies ◽  
Kamran M. Nikbin ◽  
David W. Dean

In this work a method to simulate failure due to creep is proposed using finite element damage analysis. The creep damage model is based on the creep ductility exhaustion concept. Incremental damage is defined by the ratio of incremental inelastic (plastic & creep) strain and multi-axial ductility. A simple linear damage summation rule is applied. When accumulated damage becomes unity, element stresses are reduced to almost zero to simulate progressive crack growth. The model is validated through comparison with experimental data on various sized compact tension, C(T), specimens of 316H stainless steel at 550 °C. The influence of the inelastic strain rate on the uniaxial ductility is considered. Good agreement is found between the simulated results and the experimental data.


2000 ◽  
Vol 661 ◽  
Author(s):  
Adam S. Zerda ◽  
Alan J. Lesser

ABSTRACTIntercalated nanocomposites of modified montmorillonite clays in a glassy epoxy were prepared by crosslinking with commercially available aliphatic diamine curing agents. These materials are shown to have improved Young's modulus but corresponding reductions in ultimate strength and strain to failure. These results are consistent with most particulate filled systems, The macroscopic compressive behavior is unchanged, although the failure mechanism in compression varies from the unmodified samples. The fracture toughness of these materials is investigated and improvements in toughness values of 200% over unmodified resis are demonstrated. The fracture surface topology is examined using SEM and tappin-mode AFM and showm to be related to the clay morphology of the system.


2006 ◽  
Vol 932 ◽  
Author(s):  
Pertti Auerkari ◽  
Stefan Holmström ◽  
Jorma Salonen ◽  
Pertti Nenonen

ABSTRACTTo experimentally assess the long term creep performance of oxygen-free phosphorus- doped (OFP) copper for the overpack of repository canisters, the combination of modestly elevated temperature and multi-axial stress state has been applied for accelerated testing. Multi-axiality was induced by using notched compact tension (CT) specimens, with interrupted testing to periodically inspect for creep damage. Uniaxial creep testing was also conducted to support creep analysis of the CT specimens. After about 10000 h of testing at 150°C/46 MPa (reference stress), the inspected CT specimens showed only marginal creep cavity indications near the notch tip. However, a distinct grain boundary zone with elevated Pcontent was observed to appear and widen during testing, mainly near the notch tip. The significance of the grain boundary zone is not well understood, but indicates stress-enhanced microstructural changes at relatively low temperatures. The predicted isothermal uniaxial creep life at 150°C/46 MPa agreed satisfactorily within a factor of two in time, when obtained independently from converted multi-axial testing results and directly from a creep model based on the available uniaxial data. Although the uncertainties in extended extrapolation remain large, the prediction would suggest safe long term service at leastagainst pure creep failure of intact parent material.


Sign in / Sign up

Export Citation Format

Share Document