Experiments on Cold-Formed Steel Lipped Channel Beams with Complex Edge Stiffeners and Web Holes

2013 ◽  
Vol 671-674 ◽  
pp. 461-464
Author(s):  
Chun Gang Wang ◽  
Run Jia Liang ◽  
Lian Guang Jia ◽  
Hong Liu

This paper presents an experimental investigation and a numerical analysis on the bending strength and behavior of cold-formed steel C-section and ∑-section beams with complex edge stiffeners and web holes. Local buckling, distortional buckling and interaction between local and distortional buckling were observed in the tests. The experimental results show that the stiffened web has great influence on member's bending strength. Compared with C-section specimens, the stiffness of the web stiffeners of ∑-section specimens reduced the influence of the holes. The finite element analysis results show good agreement with the experimental results in terms of bending strength and buckling mode.

2011 ◽  
Vol 70 ◽  
pp. 416-421 ◽  
Author(s):  
Iveta Georgieva ◽  
Luc Schueremans ◽  
Guido De Roeck ◽  
Lincy Pyl

Built-up members of cold-formed steel (CFS) profiles were tested in 4-point bending. CFS profiles (generally thin-walled) deform considerably under load, and the deformed configuration is a result of the superposition of different buckling mode shapes. Local buckling propagates through the profile walls; during distortional buckling parts of the cross-section rotate around a web-flange juncture. Alongside the buckling effects, the overall deformation of the member is considerable. To study these slender and relatively long members, a sufficient number of measuring positions on the specimens is needed. Often, this is not feasible with the conventional measuring techniques. An optical measuring device was used to record the movement of a large number of points per specimen. The obtained results are placed in a 3D coordinate system and can be exported for further data processing. The goal of the measurement campaign was to calibrate a Finite Element model that will simulate the tests. The model will be used for the analysis of composed frame members of CFS profiles, whose design is not entirely covered by the European Standard [1]. After calibration, the FEA predicts the performance of these built-up members well.


2010 ◽  
Vol 163-167 ◽  
pp. 651-654
Author(s):  
Tian Hua Zhou ◽  
Shao Feng Nie ◽  
Xiang Bin Liu ◽  
Guang Yi Li

18 specimens of cold-formed steel three limbs built-up section members are tested under axial compression load in this paper. The section forms are divided into two categories: A and B. Load-displacement (P-Δ) curves and failure characteristics of specimens are obtained. The results show that: As to section A members, the failure characteristics of LC, MC and SC series of specimens are flexural-torsional buckling, torsional buckling and distortional buckling, local buckling and distortional buckling. As to section B members, the failure characteristics of LC, MC series of specimens are flexural buckling, while local buckling and distortional buckling for members of SC series.


2019 ◽  
Vol 137 ◽  
pp. 251-270 ◽  
Author(s):  
Gustavo Y. Matsubara ◽  
Eduardo de M. Batista ◽  
Guilherme C. Salles

2020 ◽  
Vol 23 (10) ◽  
pp. 2174-2187
Author(s):  
Liang Zheng ◽  
Cheng Qin ◽  
Hong Guo ◽  
Dapeng Zhang ◽  
Mingtan Zhou ◽  
...  

In this article, a new type of reticulated joint, named the steel–concrete composite reticulated shell joint, is proposed. The proposed reticulated shell joint consists of an inner circular steel pipe, an outer circular steel pipe, a steel cover plate, and internal concrete. Five test specimens were tested under axial compression. The variable study included the wall thickness of the inner and outer circular steel pipes and the radius of the inner circular steel pipe. The test specimens exhibited a high bearing capacity and good plastic deformation ability under axial compression. The test results show that the wall thickness of the outer circular steel pipe and the radius of the inner circular steel pipe have a great influence on the bearing capacity of the steel–concrete composite reticulated shell joint, while the wall thickness of the inner circular steel pipe has little influence on the bearing capacity of the steel–concrete composite reticulated shell joint. Based on the test of the steel–concrete composite reticulated shell joints under axial load, the three-dimensional nonlinear finite element model was used to analyze the mechanical properties of the steel–concrete composite reticulated shell joints under axial compression. The results of the finite element analysis showed good agreement with the experimental results. The formula for calculating the bearing capacity of the joint is derived. By comparing with the experimental results, the calculated results are basically consistent with the experimental results.


2011 ◽  
Vol 473 ◽  
pp. 343-351 ◽  
Author(s):  
Iveta Georgieva ◽  
Luc Schueremans ◽  
Guido De Roeck ◽  
Lincy Pyl

The construction industry uses cold-formed steel (CFS) sheets in the form of galvanised thin-walled profiles and corrugated sheets. In the past decade, CFS profiles have been competing with their hot-rolled counterparts as primary structural members of industrial halls, office buildings and residential housing of up to 3-4 storeys. The spans and column heights achieved with CFS profiles are ever larger. Due to the large slenderness of these members, adequate strength and stability are necessary, as well as reliability in design. Thin-walled members go through buckling during all stages of their working life. Local buckling appears at loads sometimes much lower than the design load. Distortional buckling seriously reduces the member resistance. It interacts with warping and lateral-torsional buckling, being significant for these asymmetric open sections. To restrict these effects, builders employ double sections - usually two standard cold-formed shapes bolted together to form a built-up section. These sections have the advantages of symmetry, higher stability and strength. The design of built-up members involves many uncertainties - although the European standard includes guidelines on the prediction of local, distortional and global buckling, the partial integrity and interaction between the parts of the composed members is still not studied. To study the actual behaviour, built-up members are tested in bending. An optical device for 3D motion analysis measures the displacement of points of interest on the specimen. Two interacting cameras use parallax to obtain the position of an arbitrary number of reflective markers glued to the specimen. The device tracks the movement of the markers in a 3D coordinate system without any contact with the specimen. Standard displacement transducers measure vertical displacements to validate the results. The paper gives an appraisal of the applicability of the method, a summary of the difficulties faced and the outcome of the test campaign.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xingyou Yao

The objective of this paper is to investigate the buckling behavior and design method of the ultimate strength for the cold-formed steel (CFS) built-up I-sectional columns under axial compression which failed in distortional buckling and interactive buckling. A total of 56 CFS built-up I-sectional columns subjected to axial compression were tested, and the different buckling modes and ultimate strengths were analyzed in detail by varying the thickness, the length, the spacing of screws, the end fastener group, and the cross-sectional dimensions of CFS built-up I-sectional columns. It was shown in the test that noticeable interaction of local and distortional buckling or interaction of local, distortional, and global buckling was observed for the built-up I-sectional columns with different lengths and cross-sectional dimensions. A finite element model (FEM) was developed and validated with experimental results. A further parametric study has been conducted including different cross sections and slenderness ratios for the built-up I-sectional columns. The load-carrying capacities obtained from the experimental and numerical study were used to investigate the feasibility of the current direct strength method (DSM) when DSM was applied to CFS built-up I-sectional columns. The comparison results showed that the current DSM is not safe for CFS built-up columns failed in distortional buckling and interactive buckling. Therefore, the improved design formulas were proposed, and their accuracy was verified by using finite element analysis (FEA) and experimental results of CFS built-up I-sectional columns subjected to axial compression.


2013 ◽  
Vol 405-408 ◽  
pp. 664-667
Author(s):  
Chun Gang Wang ◽  
Yu Fei Cao ◽  
Lian Guang Jia ◽  
Hong Liu

This paper presents finite element analysis on cold-formed steel-section columns with complex edge stiffeners and web holes under axial compression. A total of 18 channel models with different parameters such as length, thickness and flange width are simulated. Failure modes, the ultimate load and the stress distribution around web holes are researched. The analysis results show that, the main failure mode of-section columns with complex edge stiffeners and web holes is distortional buckling. The carrying efficiency is higher as the thickness-width ratio increasing. Because of perforations on the web, the position of the max stress changes from the web near the mid-height of the specimens to the location adjacent to holes.


2015 ◽  
Vol 735 ◽  
pp. 80-84 ◽  
Author(s):  
Yeong Huei Lee ◽  
Shahrin Mohammad ◽  
Yee Ling Lee

This paper performs analytical and experimental investigation on the section properties of locally produced cold-formed steel sections. Effective width method given by BS EN1993-1-3 is used to calculate the section properties for two slender cold-formed steel channel sections, namely KS200C20 and KS250C20. Local buckling and distortional buckling are taken into account in the calculation. Effective width method has significantly reduced the full sectional area and thus gives a relative lower value for the sectional resistance of cold-formed steel channel sections. The analytical results is compared to manufacturer’s data and differences of not more than 3.37% is recorded. Experimental study on the flexural behaviour on the two types of cold-formed steel channel sections is carried out. The results show that BS EN1993-1-3 has good agreement with experimental results for flexural resistance that included local and distortional buckling consideration. It is concluded that effective width method by BS EN1993-1-3 is suitable to calculate the section properties of of locally produced cold-formed steel channel sections.


Sign in / Sign up

Export Citation Format

Share Document