scholarly journals Study on Flow Mechanism of a Morphing Supercritical Airfoil

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuanjing Wang ◽  
Binbin Lv ◽  
Pengxuan Lei ◽  
Wenkui Shi ◽  
Yu Yan

In order to maintain the best performance in flight, a new concept, morphing aircraft, has been proposed, which can change the real-time aerodynamic characteristics under different flight conditions. The key problem is to figure out the response of strong flow instability caused by structure changes during the morphing. To solve this problem, computational fluid dynamics (CFD) and wind tunnel tests (WTT) were employed. The results show that the deformation of thickness and camber angle of the airfoil will significantly change the distribution of pressure and result in obvious hysteresis loops of lift and drag. With the increase of deformation frequency and amplitude, the instability increases correspondingly. Moreover, the unsteady effect caused by camber deformation is much stronger than that caused by thickness deformation. In addition, the flow structures on the airfoil, such as the shock strength and boundary separation location, have a delay in response to structure changes. Therefore, there will be a hysteresis between airfoil deformation and aerodynamic characteristics, which means strong flow instability.

2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Wirachman Wisnoe ◽  
Rizal E.M. Nasir ◽  
Ramzyzan Ramly ◽  
Wahyu Kuntjoro ◽  
Firdaus Muhammad

In this paper, a study of aerodynamic characteristics of UiTM's Blended-Wing-Body Unmanned Aerial Vehicle (BWB-UAV) Baseline-II in terms of side force, drag force and yawing moment coefficients are presented through Computational Fluid Dynamics (CFD) simulation. A vertical rudder is added to the aircraft at the rear centre part of the fuselage as yawing control surface. The study consists of varying the side slip angles for various rudder deflection angles and to plot the results for each aerodynamic parameter. The comparison with other yawing control surface for the same aircraft obtained previously are also presented. For validation purpose, the lift and drag coefficients are compared with the results obtained from wind tunnel experiments. 


2020 ◽  
Vol 10 (10) ◽  
pp. 3404
Author(s):  
Bing Ji ◽  
Zenggang Zhu ◽  
Shijun Guo ◽  
Si Chen ◽  
Qiaolin Zhu ◽  
...  

An investigation into the aerodynamic characteristics has been presented for a bio-inspired flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an experimental model of the flapping wing aircraft has been built and tested to measure the motion and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried out based on the measured motion of the flapping wing model using an unsteady aerodynamic model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of the average lift force between the UAM and CFD method is 1.3%, and the difference between the UAM and experimental results is 18%. In addition, a parametric study is carried out by employing the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of 60°~70° as the flight velocity decreases from 5 m/s to 1 m/s during landing.


2019 ◽  
Vol 128 ◽  
pp. 10002
Author(s):  
Angel Huminic ◽  
Gabriela Huminic

This paper presents new results concerning the aerodynamics of the Ahmed body fitted with a non-flat underbody diffuser. As in previous investigations performed, the angle and the length of the diffuser are the parameters systematically varied within ranges relevant for a hatchback passenger car. Coefficients of lift and drag are compared with the values obtained for the flat underbody diffuser, and the results reveal significant improvements concerning aerodynamic characteristics of body.


2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098437
Author(s):  
Liu Jiang ◽  
Guo Zhiping ◽  
Miao Shujing ◽  
He Xiangxin ◽  
Zhu Xinyu

In order to meet the requirements of output torque, efficiency and compact shape of micro-spindles for small parts machining, a two-stage axial micro air turbine spindle with an axial inlet and outlet is proposed. Based on the k-ω turbulence model of SST, the flow field and operation characteristics of the two-stage axial micro air turbine spindle were studied using computational fluid dynamics (CFD) combined with an experimental study. We obtained the air turbine spindle under different working conditions of the loss and torque characteristics. When the inlet pressure was 300 KPa, the output speed of the two-stage turbine was 100,000 rpm, 9% higher than that of a single-stage turbine output torque. The total torque reached 6.39 N·mm, and the maximum efficiency of the turbine and the spindle were 42.2% and 32.3%, respectively. Through the research on the innovative structure of the two-stage axial micro air turbine spindle, the overall performance of the principle prototype has been significantly improved and the problems of insufficient output torque and low working efficiency in high-speed micro-machining can be solved practically, which laid a solid foundation for improving the machining efficiency of small parts and reducing the size of micro machine tool.


1940 ◽  
Vol 44 (352) ◽  
pp. 338-349
Author(s):  
A. P. West

During the past few years an extensive amount of experimental data on split flaps has been made available to the aircraft industry, through the publications of aeronautical research laboratories, both in this country and abroad. In general, each publication deals with one particular aspect of the problem, and when the effect of wing flaps on the performance of an aircraft is being estimated a certain amount of difficulty may be experienced in deciding which of the many reports available gives results most readily applicable to the case being considered ; and what allowances, if any, should be made for wing taper, flap cut-out, fuselage, etc.In this report the available data has been analysed with a view to answering these questions, and presented in such a form that it may be readily applied to determine the most probable change in the aerodynamic characteristics of a wing that may be expected from the use of this type of flap.From the appendix an estimate of the accuracy of the method can be obtained, as a comparison with full-scale data is given for lift and drag, and for the other flap characteristics the original curves have been reproduced.


Author(s):  
Yuri I. Biba ◽  
Zheji Liu ◽  
D. Lee Hill

A complete effort to redesign the aerodynamic characteristics of a single-stage pipeline compressor is presented. The components addressed are the impeller, diffuser region, and the volute. The innovation of this effort stems from the simultaneous inclusion of both the noise and aerodynamic performance as primary design parameters. The final detailed flange-to-flange analysis of the new components clearly shows that the operating range is extended and the tonal noise driven by the impeller is reduced. This is accomplished without sacrificing the existing high efficiency of the baseline machine. The body of the design effort uses both Computational Fluid Dynamics (CFD) and vibro-acoustics technology. The predictions are anchored by using the flange-to-flange analysis of the original design and its experimental performance data. By calculating delta corrections and assuming that these deltas are approximately the same for the new design, the expected performance is extrapolated.


Author(s):  
V. A. Karkoulias ◽  
P. E. Marazioti ◽  
D. P. Georgiou ◽  
E. A. Maraziotis

This paper investigates how the structure of the flow field and the vertical distribution of the pollutant concentration near the wall facades of street canyons are affected by the presence of some elements such as street level galleries. Numerical results are presented for various gallery geometries in combination with facade roughness elements (balconies) for a canyon of an aspect ratio equal to h/w=2.33. The results were obtained by a Computational Fluid Dynamics (CFD) simulation employing the ANSYS-FLUENT suite that incorporated the k-e turbulent (RNG) model. The simulation generated several flow structures inside the canyon (mainly vortices), whose characteristic properties (e.g. number, strength and size) are discussed in terms of the effect of the galleries on the flow field structure and the roughness generated by the building façade balconies. The results indicate a significant influence on both the flow field structure and the mass concentration distribution of the polluting particles.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4643-4650
Author(s):  
Yan Li ◽  
Lei Shi ◽  
Wen-Feng Guo ◽  
Kotaro Tagawa ◽  
Bin Zhao

Icing accretion on wind turbine will degrade its performance, resulting in reduction of output power and even leading to accidents. For solving this problem, it is necessary to predict the icing type and shape on wind turbine blade, and evaluate the variation of aerodynamic characteristics. In this paper the icing types and shapes in presence of airfoil, selected from blade of 1.5 MW horizontal-axis wind turbine, are simulated under different ambient temperatures and icing time lengths. Based on the icing simulation results, the aerodynamic characteristics of icing airfoils are simulated, including lift and drag coefficient, lift-drag ratio, etc. The simulation results show that the glaze ice with two horns presents on airfoil under high ambient temperature such as -5?C. When ambient temperatures are low, such as -10?C and -15?C, the rime ices with streamline profiles present on the airfoil. With increase in icing time the lift forces and coefficients decrease, and the drag ones increase. According to the variations of lift-drag ratios of icing airfoil, the aerodynamic performance of airfoil deteriorates in the presence of icing. The glaze ice has great effect on aerodynamic characteristics of airfoil. The research findings lay theoretical foundation for icing wind tunnel experiment.


2020 ◽  
Vol 36 (04) ◽  
pp. 259-270
Author(s):  
Ahmet Ziya Saydam ◽  
Serhan Gokcay ◽  
Mustafa Insel

Air wake distribution around the superstructure of a mega-yacht is a key concern for the designer because of various reasons such as comfort expectations in recreational deck areas, self-noise generation, air pollution and temperature gradients due to exhaust interactions, and safety of helicopter operations such as landing/take off and hovering. The Reynolds-averaged Navier-Stokes (RANS) technique in computational fluid dynamics (CFD) is frequently used in studies on mega-yacht hydrodynamics and aerodynamics with satisfactory results. In this article, a case study is presented for the utilization of CFD in a mega-yacht's superstructure design. The flow field in recreational open areas has been analyzed for the increase in velocity due to the existence of the superstructure. A reduction in self-noise of the mast structure has been aimed by reducing flow separation and vorticity. Time-dependent velocity data obtained with scale-resolving simulations are presented for the evaluation of helicopter landings. The capabilities and limitations of the RANS technique are discussed along with recent developments in modeling approaches.


Sign in / Sign up

Export Citation Format

Share Document