scholarly journals Dynamic Behaviors Analysis of a Novel Fractional-Order Chua’s Memristive Circuit

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chaojun Wu ◽  
Qi Zhang ◽  
Zhang Liu ◽  
Ningning Yang

This paper proposed a novel fractional-order Chua’s memristive circuit. Firstly, a fractional-order mathematical model of a diode bridge generalized memristor with RLC filter cascade is established, and simulations verify that the fractional-order generalized memristor satisfies the basic characteristics of a memristor. Secondly, the capacitor and inductor in Chua’s chaotic circuit are extended to the fractional order, and the fractional-order generalized memristor is used instead of Chua’s diode to establish the fractional-order mathematical model of chaotic circuit based on RLC generalized memristor. By studying the stability analysis of the equilibrium point and the influence of the circuit parameters on the system dynamics, the dynamic characteristics of the proposed chaotic circuit are theoretically analyzed and numerically simulated. The results show that the proposed fractional-order memristive chaotic circuit has gone through three states: period, bifurcation, and chaos, and a narrow period window appears in the chaotic region. Finally, the equivalent circuit method is adopted in PSpice to realize the construction of the fractional-order capacitance and inductance, and the simulation of the fractional-order memristive chaotic circuit is completed. The results further verify the correctness of the theoretical analysis.

Author(s):  
Ndolane Sene

This paper introduces the properties of a fractional-order chaotic system described by the Caputo derivative. The impact of the fractional-order derivative has been focused on. The phase portraits in different orders are obtained with the aids of the proposed numerical discretization, including the discretization of the Riemann-Liouville fractional integral. The stability analysis has been used to help us to delimit the chaotic region. In other words, the region where the order of the Caputo derivative involves and where the presented system in this paper is chaotic. The nature of the chaos has been established using the Lyapunov exponents in the fractional context. The schematic circuit of the proposed fractional-order chaotic system has been presented and simulated in via Mutltisim. The results obtained via Multisim simulation of the chaotic circuit are in good agreement with the results with Matlab simulations. That provided the fractional operators can be applied in real- worlds applications as modeling electrical circuits. The presence of coexisting attractors for particular values of the parameters of the presented fractional-order chaotic model has been studied.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


Author(s):  
Shuo Zhang ◽  
YangQuan Chen ◽  
Yongguang Yu

In this paper, the literature of fractional-order neural networks is categorized and discussed, which includes a general introduction and overview of fractional-order neural networks. Various application areas of fractional-order neural networks have been found or used, and will be surveyed and summarized such as neuroscience, computational science, control and optimization. Recent trends in dynamics of fractional-order neural networks are presented and discussed. The results, especially the stability analysis of fractional-order neural networks, are reviewed and different analysis methods are compared. Furthermore, the challenges and conclusions of fractional-order neural networks are given.


2012 ◽  
Vol 594-597 ◽  
pp. 358-361
Author(s):  
Shan Shan Zhang ◽  
Yu Liang Wu

Collapse is one of the major geological disasters all over the world and threats to life and property safety of people. To make a better understanding of the reason it occurs and how to deal with it, the Kim-Yun-Mine collapse is researched. There are one dangerous rock mass and two collapse accumulation body. The basic characteristics of the collapse is described clearly according to the geological exploration data, and the stability of the dangerous rock mass and the collapse accumulated body is analyzed in the way of engineering geology and stereographic projection. At last, we put forward comprehensive control measures based on the results of stability analysis and collapse characteristics.


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Lei Wang ◽  
XiaoSong Yang ◽  
WenJie Hu ◽  
Quan Yuan

A simple memristive circuit model is revisited and the stability analysis is to be given. Furthermore, we resort to Poincaré section and Poincaré map technique and present rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoe theory.


2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


Author(s):  
Lorand Gabriel Parajdi ◽  
Radu Precup ◽  
Eduard Alexandru Bonci ◽  
Ciprian Tomuleasa

A mathematical model given by a two - dimensional differential system is introduced in order to understand the transition process from the normal hematopoiesis to the chronic and accelerated acute stages in chronic myeloid leukemia. A previous model of Dingli and Michor is refined by introducing a new parameter in order to differentiate the bone marrow microenvironment sensitivities of normal and mutant stem cells. In the light of the new parameter, the system now has three distinct equilibria corresponding to the normal hematopoietic state, to the chronic state, and to the accelerated acute phase of the disease. A characterization of the three hematopoietic states is obtained based on the stability analysis. Numerical simulations are included to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document