scholarly journals Multitarget Detection of Transmission Lines Based on DANet and YOLOv4

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhen Yang ◽  
Xuefei Xu ◽  
Keke Wang ◽  
Xin Li ◽  
Chi Ma

In order to accurately identify targets such as insulators, shock hammers, bird nests, and spacers on high-voltage transmission lines, this paper proposes a multitarget detection model for transmission lines based on DANet and YOLOv4. First, the DANet and YOLOv4 are fused to solve the difficulty in understanding the scene and the discrimination of pixels caused by the complex and diverse scenes of UAV’ (unmanned aerial vehicle) aerial images (lighting, viewing angle, scale, occlusion, and so on) so as to improve the significance of the detection target. Gaussian function and KL (Kullback–Leibler) divergence are used to improve the nonmaximum suppression in YOLOv4 so as to improve the recognition rate of occluded targets; the focal loss function and the balanced cross entropy function are used to improve the loss function of YOLOv4 in order to reduce the impact of not only the imbalance between the background and the detection target but also the imbalance among the samples, which is aimed at improving the accuracy of the detection. Then, a data set is made for the experiment by using the UAV inspection image provided by a power grid company in Eastern Inner Mongolia. Finally, the algorithm proposed in this paper is compared with other target detection algorithms. Experimental results show that the average detection accuracy of the proposed algorithm can reach 94.7%, and the detection time of each image is 0.05 seconds. The method has good accuracy, real-time, and robustness.

Author(s):  
Tu Renwei ◽  
Zhu Zhongjie ◽  
Bai Yongqiang ◽  
Gao Ming ◽  
Ge Zhifeng

Unmanned Aerial Vehicle (UAV) inspection has become one of main methods for current transmission line inspection, but there are still some shortcomings such as slow detection speed, low efficiency, and inability for low light environment. To address these issues, this paper proposes a deep learning detection model based on You Only Look Once (YOLO) v3. On the one hand, the neural network structure is simplified, that is the three feature maps of YOLO v3 are pruned into two to meet specific detection requirements. Meanwhile, the K-means++ clustering method is used to calculate the anchor value of the data set to improve the detection accuracy. On the other hand, 1000 sets of power tower and insulator data sets are collected, which are inverted and scaled to expand the data set, and are fully optimized by adding different illumination and viewing angles. The experimental results show that this model using improved YOLO v3 can effectively improve the detection accuracy by 6.0%, flops by 8.4%, and the detection speed by about 6.0%.


Author(s):  
S. Su ◽  
T. Nawata ◽  
T. Fuse

Abstract. Automatic building change detection has become a topical issue owing to its wide range of applications, such as updating building maps. However, accurate building change detection remains challenging, particularly in urban areas. Thus far, there has been limited research on the use of the outdated building map (the building map before the update, referred to herein as the old-map) to increase the accuracy of building change detection. This paper presents a novel deep-learning-based method for building change detection using bitemporal aerial images containing RGB bands, bitemporal digital surface models (DSMs), and an old-map. The aerial images have two types of spatial resolutions, 12.5 cm or 16 cm, and the cell size of the DSMs is 50 cm × 50 cm. The bitemporal aerial images, the height variations calculated using the differences between the bitemporal DSMs, and the old-map were fed into a network architecture to build an automatic building change detection model. The performance of the model was quantitatively and qualitatively evaluated for an urban area that covered approximately 10 km2 and contained over 21,000 buildings. The results indicate that it can detect the building changes with optimum accuracy as compared to other methods that use inputs such as i) bitemporal aerial images only, ii) bitemporal aerial images and bitemporal DSMs, and iii) bitemporal aerial images and an old-map. The proposed method achieved recall rates of 89.3%, 88.8%, and 99.5% for new, demolished, and other buildings, respectively. The results also demonstrate that the old-map is an effective data source for increasing building change detection accuracy.


2019 ◽  
Vol 11 (18) ◽  
pp. 2176 ◽  
Author(s):  
Chen ◽  
Zhong ◽  
Tan

Detecting objects in aerial images is a challenging task due to multiple orientations and relatively small size of the objects. Although many traditional detection models have demonstrated an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs) have successfully been used for object detection, and they have demonstrated considerably superior performance than that of traditional detection methods; however, this success has not been expanded to aerial images. To overcome such problems, we propose a detection model based on two CNNs. One of the CNNs is designed to propose many object-like regions that are generated from the feature maps of multi scales and hierarchies with the orientation information. Based on such a design, the positioning of small size objects becomes more accurate, and the generated regions with orientation information are more suitable for the objects arranged with arbitrary orientations. Furthermore, another CNN is designed for object recognition; it first extracts the features of each generated region and subsequently makes the final decisions. The results of the extensive experiments performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set (OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection accuracy but also the detection speed.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1763 ◽  
Author(s):  
Haiqing Liu ◽  
Zhiqiao Li ◽  
Yuancheng Li

In recent years, various types of power theft incidents have occurred frequently, and the training of the power-stealing detection model is susceptible to the influence of the imbalanced data set and the data noise, which leads to errors in power-stealing detection. Therefore, a power-stealing detection model is proposed, which is based on Improved Conditional Generation Adversarial Network (CWGAN), Stacked Convolution Noise Reduction Autoencoder (SCDAE) and Lightweight Gradient Boosting Decision Machine (LightGBM). The model performs Generation- Adversarial operations on the original unbalanced power consumption data to achieve the balance of electricity data, and avoids the interference of the imbalanced data set on classifier training. In addition, the convolution method is used to stack the noise reduction auto-encoder to achieve dimension reduction of power consumption data, extract data features and reduce the impact of random noise. Finally, LightGBM is used for power theft detection. The experiments show that CWGAN can effectively balance the distribution of power consumption data. Comparing the detection indicators of the power-stealing model with various advanced power-stealing models on the same data set, it is finally proved that the proposed model is superior to other models in the detection of power stealing.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zulie Pan ◽  
Yuanchao Chen ◽  
Yu Chen ◽  
Yi Shen ◽  
Xuanzhen Guo

A webshell is a malicious backdoor that allows remote access and control to a web server by executing arbitrary commands. The wide use of obfuscation and encryption technologies has greatly increased the difficulty of webshell detection. To this end, we propose a novel webshell detection model leveraging the grammatical features extracted from the PHP code. The key idea is to combine the executable data characteristics of the PHP code with static text features for webshell classification. To verify the proposed model, we construct a cleaned data set of webshell consisting of 2,917 samples from 17 webshell collection projects and conduct extensive experiments. We have designed three sets of controlled experiments, the results of which show that the accuracy of the three algorithms has reached more than 99.40%, the highest reached 99.66%, the recall rate has been increased by at least 1.8%, the most increased by 6.75%, and the F1 value has increased by 2.02% on average. It not only confirms the efficiency of the grammatical features in webshell detection but also shows that our system significantly outperforms several state-of-the-art rivals in terms of detection accuracy and recall rate.


Author(s):  
D. Poli ◽  
C. Casarotto ◽  
M. Strudl ◽  
E. Bollmann ◽  
K. Moe ◽  
...  

Abstract. Historical aerial images represent a source of information of great value for glacier monitoring, as they cover the area of interest at a well-defined epoch and allow for visual interpretation and metric analysis. Typically, the aerial images are used to produce orthophotos and manually digitize the perimeters of the glaciers for analysis of the surface extent of the glaciers, while the extraction of height information is more challenging due to data quality and characteristics. This article discusses the potential of historical aerial images for glacier modelling. More specifically, it analyses the impact of their coverage, radiometric- and geometric accuracy, state of preservation and completeness on the photogrammetric workflow. The data set used consists of scans of 300 (analog) aerial images acquired between August and October 1954 by the U.S. Air Force with a Fairchild KF7660 camera over the entire Province of Trento. For the modelling of the glaciers, different techniques such as manual stereoscopic measurement and dense image matching were tested on sample glaciers and the results were analysed in detail. Due to local radiometric saturation in a large part of the glacial surfaces and other disturbances affecting the historical images (e.g. scratches, scanning errors, dark shadows), dense image matching did not produce any valuable results, and stereo plotting could be used only on images (or image parts) with acceptable quality. The derived Digital Terrain Models (DTMs) were compared with a reference DTM obtained with dense image matching from digital aerial images acquired in September 2015 with an UltraCam Eagle sensor, and, for some glaciers, to a DTM obtained with dense image matching from scanned aerial images acquired in September 1983 with a RC30 analog camera. The differences between 1954 and 2015 DTMs showed values up to 70–80 m in height and a behaviour that is confirmed by the models employed by the glaciology experts in Trento.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 771
Author(s):  
Chuanyang Liu ◽  
Yiquan Wu ◽  
Jingjing Liu ◽  
Zuo Sun

Automatic inspection of insulators from high-voltage transmission lines is of paramount importance to the safety and reliable operation of the power grid. Due to different size insulators and the complex background of aerial images, it is a difficult task to recognize insulators in aerial views. Most of the traditional image processing methods and machine learning methods cannot achieve sufficient performance for insulator detection when diverse background interference is present. In this study, a deep learning method—based on You Only Look Once (YOLO)—will be proposed, capable of detecting insulators from aerial images with complex backgrounds. Firstly, aerial images with common aerial scenes were collected by Unmanned Aerial Vehicle (UAV), and a novel insulator dataset was constructed. Secondly, to enhance feature reuse and propagation, on the basis of YOLOv3 and Dense-Blocks, the YOLOv3-dense network was utilized for insulator detection. To improve detection accuracy for different sized insulators, a structure of multiscale feature fusion was adapted to the YOLOv3-dense network. To obtain abundant semantic information of upper and lower layers, multilevel feature mapping modules were employed across the YOLOv3-dense network. Finally, the YOLOv3-dense network and compared networks were trained and tested on the testing set. The average precision of YOLOv3-dense, YOLOv3, and YOLOv2 were 94.47%, 90.31%, and 83.43%, respectively. Experimental results and analysis validate the claim that the proposed YOLOv3-dense network achieves good performance in the detection of different size insulators amid diverse background interference.


2019 ◽  
Vol 9 (10) ◽  
pp. 2009 ◽  
Author(s):  
Jiaming Han ◽  
Zhong Yang ◽  
Qiuyan Zhang ◽  
Cong Chen ◽  
Hongchen Li ◽  
...  

Insulator faults detection is an important task for high-voltage transmission line inspection. However, current methods often suffer from the lack of accuracy and robustness. Moreover, these methods can only detect one fault in the insulator string, but cannot detect a multi-fault. In this paper, a novel method is proposed for insulator one fault and multi-fault detection in UAV-based aerial images, the backgrounds of which usually contain much complex interference. The shapes of the insulators also vary obviously due to the changes in filming angle and distance. To reduce the impact of complex interference on insulator faults detection, we make full use of the deep neural network to distinguish between insulators and background interference. First of all, plenty of insulator aerial images with manually labelled ground-truth are collected to construct a standard insulator detection dataset ‘InST_detection’. Secondly, a new convolutional network is proposed to obtain accurate insulator string positions in the aerial image. Finally, a novel fault detection method is proposed that can detect both insulator one fault and multi-fault in aerial images. Experimental results on a large number of aerial images show that our proposed method is more effective and efficient than the state-of-the-art insulator fault detection methods.


Author(s):  
Lei Luo ◽  
Jian Pei ◽  
Heng Huang

This paper introduces a novel Robust Regression (RR) model, named Sinkhorn regression, which imposes Sinkhorn distances on both loss function and regularization. Traditional RR methods target at searching for an element-wise loss function (e.g., Lp-norm) to characterize the errors such that outlying data have a relatively smaller influence on the regression estimator. Due to the neglect of the geometric information, they often lead to the suboptimal results in the practical applications. To address this problem, we use a cross-bin distance function, i.e., Sinkhorn distances, to capture the geometric knowledge of real data. Sinkhorn distances is invariant in movement, rotation and zoom. Thus, our method is more robust to variations of data than traditional regression models. Meanwhile, we leverage Kullback-Leibler divergence to relax the proposed model with marginal constraints into its unbalanced formulation to adapt more types of features. In addition, we propose an efficient algorithm to solve the relaxed model and establish its complete statistical guarantees under mild conditions. Experiments on the five publicly available microarray data sets and one mass spectrometry data set demonstrate the effectiveness and robustness of our method.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012033
Author(s):  
Yuhuan Li ◽  
Jie Wang ◽  
Baodai Shi

Abstract The detection speed of target detection algorithm depends on the performance of computer equipment. Aiming at the problems of slow detection speed and difficult trade-off between detection accuracy and detection speed when the target detection model is used in embedded devices, a lightweight target detection model based on the improved Tiny YOLO-V3 is proposed. Firstly, we analyze the time consumption of each layer structure in the convolutional neural network, and do a lot of experiments and tests. Then, we compress the time-consuming structure substantially. Secondly, we propose the segmentation and fusion module to improve the detection accuracy. Finally, we use the remote sensing data set of Wuhan University for experiments, and the experimental results show that compared with Tiny YOLO-V3, the detection speed is improved by 4 times, and the accuracy is improved by 2 percentage points.


Sign in / Sign up

Export Citation Format

Share Document