scholarly journals Altered Functional Connectivity in Children with ADHD Revealed by Scalp EEG: An ERP Study

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chunli Chen ◽  
Huan Yang ◽  
Yasong Du ◽  
Guangzhi Zhai ◽  
Hesheng Xiong ◽  
...  

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental brain disorders in childhood. Despite extensive researches, the neurobiological mechanism underlying ADHD is still left unveiled. Since the deficit functions, such as attention, have been demonstrated in ADHD, in our present study, based on the oddball P3 task, the corresponding electroencephalogram (EEG) of both healthy controls (HCs) and ADHD children was first collected. And we then not only focused on the event-related potential (ERP) evoked during tasks but also investigated related brain networks. Although an insignificant difference in behavior was found between the HCs and ADHD children, significant electrophysiological differences were found in both ERPs and brain networks. In detail, the dysfunctional attention occurred during the early stage of the designed task; as compared to HCs, the reduced P2 and N2 amplitudes in ADHD children were found, and the atypical information interaction might further underpin such a deficit. On the one hand, when investigating the cortical activity, HCs recruited much stronger brain activity mainly in the temporal and frontal regions, compared to ADHD children; on the other hand, the brain network showed atypical enhanced long-range connectivity between the frontal and occipital lobes but attenuated connectivity among frontal, parietal, and temporal lobes in ADHD children. We hope that the findings in this study may be instructive for the understanding of cognitive processing in children with ADHD.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxiao Li

In the natural environment, facial and bodily expressions influence each other. Previous research has shown that bodily expressions significantly influence the perception of facial expressions. However, little is known about the cognitive processing of facial and bodily emotional expressions and its temporal characteristics. Therefore, this study presented facial and bodily expressions, both separately and together, to examine the electrophysiological mechanism of emotional recognition using event-related potential (ERP). Participants assessed the emotions of facial and bodily expressions that varied by valence (positive/negative) and consistency (matching/non-matching emotions). The results showed that bodily expressions induced a more positive P1 component and a shortened latency, whereas facial expressions triggered a more negative N170 and prolonged latency. Among N2 and P3, N2 was more sensitive to inconsistent emotional information and P3 was more sensitive to consistent emotional information. The cognitive processing of facial and bodily expressions had distinctive integrating features, with the interaction occurring in the early stage (N170). The results of the study highlight the importance of facial and bodily expressions in the cognitive processing of emotion recognition.


2016 ◽  
Vol 46 (15) ◽  
pp. 3173-3185 ◽  
Author(s):  
C. Y. Shang ◽  
C. G. Yan ◽  
H. Y. Lin ◽  
W. Y. Tseng ◽  
F. X. Castellanos ◽  
...  

BackgroundMethylphenidate and atomoxetine are commonly prescribed for treating attention deficit hyperactivity disorder (ADHD). However, their therapeutic neural mechanisms remain unclear.MethodAfter baseline evaluation including cognitive testing of the Cambridge Neuropsychological Test Automated Battery (CANTAB), drug-naive children with ADHD (n = 46), aged 7–17 years, were randomly assigned to a 12-week treatment with methylphenidate (n = 22) or atomoxetine (n = 24). Intrinsic brain activity, including the fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo), was quantified via resting-state functional magnetic resonance imaging at baseline and week 12.ResultsReductions in inattentive symptoms were related to increased fALFF in the left superior temporal gyrus and left inferior parietal lobule for ADHD children treated with methylphenidate, and in the left lingual gyrus and left inferior occipital gyrus for ADHD children treated with atomoxetine. Hyperactivity/impulsivity symptom reductions were differentially related to increased fALFF in the methylphenidate group and to decreased fALFF in the atomoxetine group in bilateral precentral and postcentral gyri. Prediction analyses in the atomoxetine group revealed negative correlations between pre-treatment CANTAB simple reaction time and fALFF change in the left lingual gyrus and left inferior occipital gyrus, and positive correlations between pre-treatment CANTAB simple movement time and fALFF change in bilateral precentral and postcentral gyri and left precuneus, with a negative correlation between movement time and the fALFF change in the left lingual gyrus and the inferior occipital gyrus.ConclusionsOur findings suggest differential neurophysiological mechanisms for the treatment effects of methylphenidate and atomoxetine in children with ADHD.


2016 ◽  
Vol 22 (7) ◽  
pp. 661-670 ◽  
Author(s):  
Kyoung Doo Kang ◽  
Doug Hyun Han ◽  
Sun Mi Kim ◽  
Sujin Bae ◽  
Perry F. Renshaw

Objective: We assessed the correlation between the deficits of cognition, movement, and brain activity in children with Attention Deficit Hyperactvity Disorder (ADHD). Method: We recruited 15 children with ADHD and 15 age- and sex-matched healthy control participants. Clinical symptoms, cognitive shifting, movement shifting, and brain activity were assessed using the Korean ADHD Rating Scale, the Wisconsin Card Sorting Test (WCST), the 7- and 14-ring drill test with hop jumps (7 HJ and 14 HJ), and 3.0 Tesla functional magnetic resonance imaging scanner, respectively. Results: ADHD children showed an increased distance traveled and decreased speed on the 14 HJ task. In response to the WCST task, ADHD children showed decreased activation within right gyrus. Total distance on the 14 HJ task was negatively correlated with the mean β value of Cluster 2 in ADHD children. Conclusion: These results suggested that children with ADHD showed difficulty with attention shifting as well as with movement shifting.


2021 ◽  
Author(s):  
Maxwell Shinn ◽  
Amber Hu ◽  
Laurel Turner ◽  
Stephanie Noble ◽  
Sophie Achard ◽  
...  

Correlations are a basic object of analysis across neuroscience, but multivariate patterns of correlations can be difficult to interpret. For example, correlations are fundamental to understanding timeseries derived from resting-state functional magnetic resonance imaging (rs-fMRI), a proxy of brain activity. Networks constructed from regional correlations in rs-fMRI timeseries are often interpreted as brain connectivity, yet the links between brain networks and neurobiology have until now been largely speculative. Here, we show that the topology of rs-fMRI brain networks is caused by the spatial and temporal autocorrelation of the timeseries used to construct them. Spatial and temporal autocorrelation show high test-retest reliability, and are correlated with popular measures of network topology. A generative model of spatially and temporally autocorrelated timeseries exhibits similar network topology to brain networks, and when fit to individual subjects, it captures near the reliability limit of subject and regional variation. We demonstrate why spatial and temporal autocorrelation induce network structure, and highlight their ability to link graph properties to neurobiology during healthy aging. These results offer a reductionistic account of brain network complexity, explaining characteristic patterns in brain networks using timeseries statistics.


2019 ◽  
Vol 30 (4) ◽  
pp. 2019-2029 ◽  
Author(s):  
Eloise A Stark ◽  
Joana Cabral ◽  
Madelon M E Riem ◽  
Marinus H Van IJzendoorn ◽  
Alan Stein ◽  
...  

Abstract The perception of infant emotionality, one aspect of temperament, starts to form in infancy, yet the underlying mechanisms of how infant emotionality affects adult neural dynamics remain unclear. We used a social reward task with probabilistic visual and auditory feedback (infant laughter or crying) to train 47 nulliparous women to perceive the emotional style of six different infants. Using functional neuroimaging, we subsequently measured brain activity while participants were tested on the learned emotionality of the six infants. We characterized the elicited patterns of dynamic functional brain connectivity using Leading Eigenvector Dynamics Analysis and found significant activity in a brain network linking the orbitofrontal cortex with the amygdala and hippocampus, where the probability of occurrence significantly correlated with the valence of the learned infant emotional disposition. In other words, seeing infants with neutral face expressions after having interacted and learned their various degrees of positive and negative emotional dispositions proportionally increased the activity in a brain network previously shown to be involved in pleasure, emotion, and memory. These findings provide novel neuroimaging insights into how the perception of happy versus sad infant emotionality shapes adult brain networks.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Holger Franz Sperdin ◽  
Ana Coito ◽  
Nada Kojovic ◽  
Tonia Anahi Rihs ◽  
Reem Kais Jan ◽  
...  

Social impairments are a hallmark of Autism Spectrum Disorders (ASD), but empirical evidence for early brain network alterations in response to social stimuli is scant in ASD. We recorded the gaze patterns and brain activity of toddlers with ASD and their typically developing peers while they explored dynamic social scenes. Directed functional connectivity analyses based on electrical source imaging revealed frequency specific network atypicalities in the theta and alpha frequency bands, manifesting as alterations in both the driving and the connections from key nodes of the social brain associated with autism. Analyses of brain-behavioural relationships within the ASD group suggested that compensatory mechanisms from dorsomedial frontal, inferior temporal and insular cortical regions were associated with less atypical gaze patterns and lower clinical impairment. Our results provide strong evidence that directed functional connectivity alterations of social brain networks is a core component of atypical brain development at early stages of ASD.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Yener Mutlu ◽  
Edward Bernat ◽  
Selin Aviyente

In recent years, there has been a growing need to analyze the functional connectivity of the human brain. Previous studies have focused on extracting static or time-independent functional networks to describe the long-term behavior of brain activity. However, a static network is generally not sufficient to represent the long term communication patterns of the brain and is considered as an unreliable snapshot of functional connectivity. In this paper, we propose a dynamic network summarization approach to describe the time-varying evolution of connectivity patterns in functional brain activity. The proposed approach is based on first identifying key event intervals by quantifying the change in the connectivity patterns across time and then summarizing the activity in each event interval by extracting the most informative network using principal component decomposition. The proposed method is evaluated for characterizing time-varying network dynamics from event-related potential (ERP) data indexing the error-related negativity (ERN) component related to cognitive control. The statistically significant connectivity patterns for each interval are presented to illustrate the dynamic nature of functional connectivity.


2018 ◽  
Vol 26 (2) ◽  
pp. 188-200 ◽  
Author(s):  
Ismail Koubiyr ◽  
Mathilde Deloire ◽  
Pierre Besson ◽  
Pierrick Coupé ◽  
Cécile Dulau ◽  
...  

Background: There is a lack of longitudinal studies exploring the topological organization of functional brain networks at the early stages of multiple sclerosis (MS). Objective: This study aims to assess potential brain functional reorganization at rest in patients with CIS (PwCIS) after 1 year of evolution and to characterize the dynamics of functional brain networks at the early stage of the disease. Methods: We prospectively included 41 PwCIS and 19 matched healthy controls (HCs). They were scanned at baseline and after 1 year. Using graph theory, topological metrics were calculated for each region. Hub disruption index was computed for each metric. Results: Hub disruption indexes of degree and betweenness centrality were negative at baseline in patients ( p < 0.05), suggesting brain reorganization. After 1 year, hub disruption indexes for degree and betweenness centrality were still negative ( p < 0.00001), but such reorganization appeared more pronounced than at baseline. Different brain regions were driving these alterations. No global efficiency differences were observed between PwCIS and HCs either at baseline or at 1 year. Conclusion: Dynamic changes in functional brain networks appear at the early stages of MS and are associated with the maintenance of normal global efficiency in the brain, suggesting a compensatory effect.


2013 ◽  
Vol 35 (3) ◽  
pp. 322-328 ◽  
Author(s):  
Chiao-Ling Hung ◽  
Yu-Kai Chang ◽  
Yuan-Shuo Chan ◽  
Chia-Hao Shih ◽  
Chung-Ju Huang ◽  
...  

The purpose of the current study was to examine the relationship between motor ability and response inhibition using behavioral and electrophysiological indices in children with ADHD. A total of 32 participants were recruited and underwent a motor ability assessment by administering the Basic Motor Ability Test-Revised (BMAT) as well as the Go/No-Go task and event-related potential (ERP) measurements at the same time. The results indicated that the BMAT scores were positively associated with the behavioral and ERP measures. Specifically, the BMAT average score was associated with a faster reaction time and higher accuracy, whereas higher BMAT subset scores predicted a shorter P3 latency in the Go condition. Although the association between the BMAT average score and the No-Go accuracy was limited, higher BMAT average and subset scores predicted a shorter N2 and P3 latency and a larger P3 amplitude in the No-Go condition. These findings suggest that motor abilities may play roles that benefit the cognitive performance of ADHD children.


2020 ◽  
Author(s):  
Rosaria Rucco ◽  
Anna Lardone ◽  
marianna Liparoti ◽  
Emahnuel Troisi Lopez ◽  
Rosa De Micco ◽  
...  

Aim The aim of the present study is to investigate the relations between both functional connectivity and brain networks with cognitive decline, in patients with Parkinson′s disease (PD). Introduction PD phenotype is not limited to motor impairment but, rather, a wide range of non-motor disturbances can occur, cognitive impairment being one of the commonest. However, how the large-scale organization of brain activity differs in cognitively impaired patients, as opposed to cognitively preserved ones, remains poorly understood. Methods Starting from source-reconstructed resting-state magnetoencephalography data, we applied the PLM to estimate functional connectivity, globally and between brain areas, in PD patients with and without cognitive impairment (respectively PD-CI and PD-NC), as compared to healthy subjects (HS). Furthermore, using graph analysis, we characterized the alterations in brain network topology and related these, as well as the functional connectivity, to cognitive performance. Results We found reduced global and nodal PLM in several temporal (fusiform gyrus, Heschl′s gyrus and inferior temporal gyrus), parietal (postcentral gyrus), and occipital (lingual gyrus) areas within the left hemisphere, in the gamma band, in PD-CI patients, as compared to PD-NC and HS. With regard to the global topological features, PD-CI patients, as compared to HS and PD-NC patients, showed differences in multi frequencies bands (delta, alpha, gamma) in the Leaf fraction, Tree hierarchy (both higher in PD-CI) and Diameter (lower in PD-CI). Finally, we found statistically significant correlations between the MoCA test and both the Diameter in delta band and the Tree Hierarchy in the alpha band. Conclusion Our work points to specific large-scale rearrangements that occur selectively in cognitively compromised PD patients and correlated to cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document