scholarly journals A LiDAR-Aided Inertial Positioning Approach for a Longwall Shearer in Underground Coal Mining

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jiangtao Zheng ◽  
Sihai Li ◽  
Nan Li ◽  
Qiangwen Fu ◽  
Shiming Liu ◽  
...  

The absolute three-dimensional position of a longwall shearer is fundamental to longwall mining automation. The positioning of the longwall shearer is usually realized by the inertial navigation system (INS) and odometer (OD). However, the position accuracy of this positioning approach gradually decreases over time due to the gyro drift. To further increase the positioning accuracy of the shearer, this paper proposes a positioning approach based on the INS and light detection and ranging (LiDAR). A Kalman filter (KF) model based on the observation provided by detecting hydraulic supports which are part of the longwall face, using the LiDAR, is established. The selection scheme of the point features is studied through a set of simulations. In addition, compared with that of the approach based on the INS and OD, the shearer positioning accuracy obtained using the proposed approach is higher. When the shearer moves along a 350 m track for 6 cutting cycles and lasts about 7.1 h, both east and north position errors can be maintained within 0.2 m and the height error within 0.1 m.

2020 ◽  
Vol 55 (2) ◽  
pp. 41-60
Author(s):  
Jabir Shabbir Malik

AbstractIn addition to Global Positioning System (GPS) constellation, the number of Global Navigation Satellite System (GLONASS) satellites is increasing; it is now possible to evaluate and analyze the position accuracy with both the GPS and GLONASS constellation. In this article, statistical analysis of static precise point positioning (PPP) using GPS-only, GLONASS-only, and combined GPS/GLONASS modes is evaluated. Observational data of 10 whole days from 10 International GNSS Service (IGS) stations are used for analysis. Position accuracy in east, north, up components, and carrier phase/code residuals is analyzed. Multi-GNSS PPP open-source package is used for the PPP performance analysis. The analysis also provides the GNSS researchers the understanding of the observational data processing algorithm. Calculation statistics reveal that standard deviation (STD) of horizontal component is 3.83, 13.80, and 3.33 cm for GPS-only, GLONASS-only, and combined GPS/GLONASS PPP solutions, respectively. Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPS-only and GLONASS-only PPP solutions. The results of the calculation show that combined GPS/GLONASS PPP improves, on an average, horizontal accuracy by 12.11% and 60.33% and 3D positioning accuracy by 10.39% and 66.78% compared with GPS-only and GLONASS-only solutions, respectively. In addition, the results also demonstrate that GPS-only solutions show an improvement of 54.23% and 62.54% compared with GLONASS-only PPP mode in horizontal and 3D components, respectively. Moreover, residuals of GLONASS ionosphere-free code observations are larger than the GPS code residuals. However, phase residuals of GPS and GLONASS phase observations are of the same magnitude.


2020 ◽  
Vol 55 (4) ◽  
pp. 150-170
Author(s):  
Jabir Shabbir Malik

AbstractIn addition to GPS and GLONASS constellation, the number of (Global Navigation Satellite System) GNSS satellites are increasing, it is now possible to evaluate and analyze the position accuracy with multi GNSS constellation. In this paper, statistical assessment of static Precise Point Positioning (PPP) using GPS, GLONASS, dual system GPS/GLONASS, three system GPS/GLONASS/Galileo, GPS/GLONASS/BeiDou and multi system GPS/GLONASS/Galileo/BeiDou PPP combinations is evaluated. Observation data of seven whole days from seven IGS multi GNSS experiment (MGEX) stations is used for analysis. Position accuracy and convergence time is analyzed. Results show that the GPS/GLONASS positioning accuracy increases over GPS PPP. Standard deviations (STDs) of position errors for GPS PPP are 4.63, 3.00 and 6.96 cm in east, north and up components while STDs for GPS/GLONASS PPP are 4.10, 3.42 and 6.50 cm respectively. Root mean square for three dimension (RMS3D) for GPS/GLONASS PPP solution is 8.96 cm. With the addition of Galileo and BeiDou to the combined GPS/GLONASS further enhances the positioning accuracy. Root mean square for horizontal component reach to 5.35 cm of GPS/GLONASS/Galileo/BeiDou PPP solutions. Results analysis of GPS/GLONASS/Galileo PPP solutions show an improvement of convergence time by only 3.81% to achieve accuracy level of 3.0 cm over GPS/GLONASS/BeiDou PPP mode. Results also demonstrate that position accuracy improvement after adding BeiDou observations to the GPS/GLONASS PPP mode is not significant.


2021 ◽  
Vol 13 (18) ◽  
pp. 3708
Author(s):  
Jiangtao Zheng ◽  
Sihai Li ◽  
Shiming Liu ◽  
Qiangwen Fu

Accurate positioning of the shearer with a strapdown inertial navigation system (SINS) is the key technology to realize the automation of the longwall face. Unfortunately, the existing positioning methods have a strong dependence on the attitude accuracy of the SINS. The position errors gradually increase with the drift of the SINS attitude. To reduce the dependence on the SINS attitude and further increase the shearer positioning accuracy, this paper proposes a positioning method based on SINS and light detection and ranging (LiDAR) with velocity and absolute position constraints. A Kalman filter (KF) model based on these constraints was established. Simulation analysis shows that the attitude calibration between the shearer body, SINS and LiDAR, and the initial attitude alignment of the SINS are the keys to determining the shearer positioning accuracy. Even if there are small horizontal bends in the running track of the shearer and the features have small horizontal errors, an excellent positioning effect can still be obtained. In addition, four cutting processes were simulated with a reciprocating travel of 44.6 m and an advance distance of 1.2 m. Compared with the relative positioning method, the positioning accuracy of the proposed method was improved by 37%, 63%, 76%, and 69% from the first to the fourth cutting cycle, respectively, calculated by spherical error probable (SEP) values, and positioning accuracy had a lower dependence on the installation deflection angles between the SINS, the LiDAR, and the SINS attitude accuracy.


1989 ◽  
Vol 111 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Chia-Hsiang Menq ◽  
Jin-Hwan Borm

For the accurate control and implementation of a robot in an integrated manufacturing environment using off-line programming, a knowledge of the absolute positioning accuracy of the robot becomes important. This paper presents a framework which can be used to statistically represent the absolute positioning accuracy for a family of robots. Statistical error measure indices are proposed to represent the position error field over the working space for a family of robots. This error field provides statistical information for the position errors of the end-effector and can be a guide for the determination of the optimal design tolerances of the parts composing of a robot. The second objective of the paper is to introduce a simple interpolation scheme to improve the local position accuracy by teaching one or more task reference frames with which goal positions are mathematically expressed. It will be shown how the method shifts or alters the position error field in order to maintain the desired position accuracy within a desired working area.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1055
Author(s):  
Qingyun Zhang ◽  
Jian Yang ◽  
Panpan Huang ◽  
Xin Liu ◽  
Shanpeng Wang ◽  
...  

In this paper, to address the problem of positioning accumulative errors of the inertial navigation system (INS), a bionic autonomous positioning mechanism integrating INS with a bioinspired polarization compass is proposed. In addition, the bioinspired positioning system hardware and the integration model are also presented. Concerned with the technical issue of the accuracy and environmental adaptability of the integrated positioning system, the sun elevation calculating method based on the degree of polarization (DoP) and direction of polarization (E-vector) is presented. Moreover, to compensate for the latitude and longitude errors of INS, the bioinspired positioning system model combining the polarization compass and INS is established. Finally, the positioning performance of the proposed bioinspired positioning system model was validated via outdoor experiments. The results indicate that the proposed system can compensate for the position errors of INS with satisfactory performance.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Shi-bo Wang ◽  
Shijia Wang ◽  
Zhaoliang Ge

The horizon control system is the key technology in the automation of a shearer. The achievement of accurate shearer cutting path plays an important role for horizon control. A mathematical model of cutting path in the local geographic coordinate frame was built. Error analysis based on genetic algorithm (GA) was studied to guarantee the accuracy of the shearer cutting path. Parameters from a MG1000/2660-WD shearer and data from a working face were used to obtain the shearer cutting path with reference to the local geographic coordinate frame. Also, with error analysis based on GA, the desired sensors were chosen, which allowed coordinate position errors of a shearer’s cutting path to be less than 0.01 m. The desired accuracies of the inertial navigation system and encoders mounted on the different shearers used in thin seam, medium-thickness seam, and thick seam were calculated.


Sensor Review ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Shengbo Sang ◽  
Ruiyong Zhai ◽  
Wendong Zhang ◽  
Qirui Sun ◽  
Zhaoying Zhou

Purpose – This study aims to design a new low-cost localization platform for estimating the location and orientation of a pedestrian in a building. The micro-electro-mechanical systems (MEMS) sensor error compensation and the algorithm were improved to realize the localization and altitude accuracy. Design/methodology/approach – The platform hardware was designed with common low-performance and inexpensive MEMS sensors, and with a barometric altimeter employed to augment altitude measurement. The inertial navigation system (INS) – extended Kalman filter (EKF) – zero-velocity updating (ZUPT) (INS-EKF-ZUPT [IEZ])-extended methods and pedestrian dead reckoning (PDR) (IEZ + PDR) algorithm were modified and improved with altitude determined by acceleration integration height and pressure altitude. The “AND” logic with acceleration and angular rate data were presented to update the stance phases. Findings – The new platform was tested in real three-dimensional (3D) in-building scenarios, achieved with position errors below 0.5 m for 50-m-long route in corridor and below 0.1 m on stairs. The algorithm is robust enough for both the walking motion and the fast dynamic motion. Originality/value – The paper presents a new self-developed, integrated platform. The IEZ-extended methods, the modified PDR (IEZ + PDR) algorithm and “AND” logic with acceleration and angular rate data can improve the high localization and altitude accuracy. It is a great support for the increasing 3D location demand in indoor cases for universal application with ordinary sensors.


Author(s):  
Nicholas D. Leque ◽  
Ahmet Kahraman

Planet-to-planet load sharing is a major design and manufacturing tolerancing issue in planetary gear sets. Planetary gear sets are advantageous over their countershaft alternatives in many aspects, provided that each planet branch carries a reasonable, preferably equal, share of the torque transmitted. In practice, the load shared among the planets is typically not equal due to the presence of various manufacturing errors. This study aims at enhancing the models for planet load sharing through a three-dimensional formulation of N-planet helical planetary gear sets. Apart from previous models, the proposed model employs a gear mesh load distribution model to capture load and time dependency of the gear meshes iteratively. It includes all three types of manufacturing errors, namely constant errors such as planet pinhole position errors and pinhole diameter errors, constant but assembly dependent errors such as nominal planet tooth thickness errors, planet bore diameter errors, and rotation and assembly dependent errors such as gear eccentricities and run-outs. At the end, the model is used to show combined influence of these errors on planet load sharing to aid designers on how to account for manufacturing tolerances in the design of the gears of a planetary gear set.


2012 ◽  
Vol 566 ◽  
pp. 703-706
Author(s):  
Wei Gao ◽  
Ya Zhang ◽  
Qian Sun ◽  
Yue Yang Ben

It is known that the precision of the strapdown inertial navigation system is influenced by constant bias of inertial sensors. A method of self-compensation based on a rotating inertial navigation system is proposed to enhance the precision. The constant drift of gyro and accelerometers is modulated into a seasonal and zero-mean form. In the paper, the theory of the rotary modulation and the basic requirement of the rotation method are analyzed. A new dual-axis rotating method is put forward. Simulations have been done. And the results indicate that the method can clear up the constant bias of the inertial sensors quickly and effectively. The position accuracy can be greatly enhanced compared with no rotary manner.


Sign in / Sign up

Export Citation Format

Share Document