scholarly journals Numerical Analyses of Static Characteristics of Liquid Annular Seals Based on 2D LBM-LES Model

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhenjie Zhang ◽  
Lulu Zhai ◽  
Jia Guo ◽  
Zuchao Zhu ◽  
Guoyou Chen

Static characteristics and leakage flow rates of liquid annular seals have great influences on the hydraulic efficiency of turbomachinery. In this paper, a two-dimensional (2D) mathematical model for predicting the leakage flow rates and static characteristics of liquid seal is established, based on the lattice Boltzmann method (LBM) combined with the D2G9 velocity model for incompressible fluid and large eddy simulation (LES) turbulence model, in which the transformation equation of reference pressure is developed with the Bernoulli equation. Moreover, the proposed model is validated by comparing with the experimental results, calculation results based on the finite volume method (FVM), and the results based on the empirical method of three seals under different operating conditions. The comparisons show that the maximum deviation in leakage prediction of the calculating model based on 2D LBM is 4%, and this calculating model will effectively improve the leakage prediction accuracy of the seals compared with the FVM and theoretical method.

2018 ◽  
Vol 5 (6) ◽  
pp. 180101 ◽  
Author(s):  
Lulu Zhai ◽  
Zhang Zhenjie ◽  
Chi Zhonghuang ◽  
Guo Jia

Annular seals have significant effects on the hydraulic and rotordynamic performances of turbomachinery. In this paper, an analysis method for calculating the leakage flow rates and dynamic characteristics of liquid annular seals with herringbone grooves on the rotor is proposed and verified. Leakage flow rates and dynamic characteristics of the model seals under different operating conditions are theoretically analysed and compared with those of plain and spiral-grooved seals of the same size. In addition, the influence of geometric parameters such as spiral angle and the lengths of the constituent parts on the sealing and rotordynamic coefficients of seals with herringbone grooves are also discussed. The results show that seals with herringbone grooves have better sealing performance, while providing better support actions and damping characteristics than the other two seal types under the same operating conditions. The seal geometric parameters including spiral angle, the lengths of the constituent parts and the clearance value have a significant influence on the dynamic characteristics of seals with herringbone grooves.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Zhigang Li ◽  
Zhi Fang ◽  
Jun Li

Abstract Liquid annular seals with parallelly grooved stator or rotor are used as replacements for smooth plain seals in centrifugal pumps to reduce leakage and break up contaminants within the working fluid. Parallelly grooved liquid annular seals have advantages of less leakage and smaller possibility of abrasion when the seal rotor–stator rubs in comparison to smooth plain seals. This paper deals with the static and rotordynamic characteristics of parallelly grooved liquid annular seals, which are limited in the literature. Numerical results of leakage flow rates, drag powers, and rotordynamic force coefficients were presented and compared for a grooved-stator/smooth-rotor (GS-SR) liquid annular seal and a smooth-stator/grooved-rotor (SS-GR) liquid annular seal, utilizing a modified transient computational fluid dynamics-based perturbation approach based on the multiple-frequency elliptical-orbit rotor whirling model. Both liquid annular seals have identical seal axial length, rotor diameter, sealing clearance, groove number, and geometry. The present transient computational fluid dynamics-based perturbation method was adequately validated based on the published experiment data of leakage flow rates and frequency-independent rotordynamic force coefficients for the GS-SR and SS-GR liquid annular seals at various pressure drops with differential inlet preswirl ratios. Simulations were performed at three pressure drops (4.14 bar, 6.21 bar, and 8.27 bar), three rotational speeds (2 krpm, 4 krpm, and 6 krpm) and three inlet preswirl ratios (0, 0.5, and 1.0), applying a wide rotor whirling frequency range up to 200 Hz, to analyze and compare the influences of operation conditions on the static and rotordynamic characteristics for both the GS-SR and SS-GR liquid annular seals. Results show that the present two liquid annular seals possess similar sealing capability, and the SS-GR seal produces a slightly larger (∼2–10%) drag power loss than the GS-SR seal. For small rotor whirling motion around a centered position, both seals have the identical direct force coefficients and the equal-magnitude opposite-sign cross-coupling force coefficients in the orthogonal directions x and y. For all operation conditions, both the GS-SR and SS-GR liquid annular seals possess negative direct stiffness K and positive direct damping C. The GS-SR seal produces purely positive Ceff throughout the whirling frequency range for all operation conditions, while Ceff for the SS-GR seal shows a significant decrease and transitions to negative value at the crossover frequency fco with increasing rotational speed and inlet preswirl. From a rotordynamic viewpoint, the GS-SR liquid annular seal is a better seal concept for pumps.


Author(s):  
Zhigang Li ◽  
Zhi Fang ◽  
Jun Li ◽  
Zhenping Feng

Abstract Liquid annular seals with parallelly-grooved stator or rotor are used as replacements for smooth plain seals in centrifugal pumps to reduce leakage and break up contaminants within the working fluid. Parallelly-grooved liquid annular seals have advantages of less leakage and smaller possibility of abrasion when the seal rotor-stator rubs in comparison to smooth plain seals. This paper deals with the static and rotordynamic characteristics of parallelly-grooved liquid annular seals, which are limited in the literature. Numerical results of leakage flow rates, drag powers and rotordynamic force coefficients were presented and compared for a grooved-stator/smooth-rotor (GS-SR) liquid annular seal and a smooth-stator/grooved-rotor (SS-GR) liquid annular seal, utilizing a modified transient CFD-based perturbation approach based on the multiple-frequency elliptical-orbit rotor whirling model. Both liquid annular seals have identical seal axial length, rotor diameter, sealing clearance, groove number and geometry. The present transient CFD-based perturbation method was adequately validated based on the published experiment data of leakage flow rates and frequency-independent rotordynamic force coefficients for the GS-SR and SS-GR liquid annular seals at various pressure drops with differential inlet preswirl ratios. Simulations were performed at three pressure drops (4.14 bar, 6.21 bar, 8.27 bar), three rotational speeds (2 krpm, 4 krpm, 6 krpm) and three inlet preswirl ratios (0, 0.5, 1.0), applying a wide rotor whirling frequency range up to 200 Hz, to analyze and compare the influences of operation conditions on the static and rotordynamic characteristics for both the GS-SR and SS-GR liquid annular seals. Results show that the present two liquid annular seals possess similar sealing capability, and the SS-GR seal produces a slightly larger (∼ 2–10%) drag power loss than the GS-SR seal. For small rotor whirling motion around a centered position, both seals have the identical direct force coefficients and the equal-magnitude opposite-sign cross-coupling force coefficients in the orthogonal directions x and y. For all operation conditions, both the GS-SR and SS-GR liquid annular seals possess negative direct stiffness K and positive direct damping C. The GS-SR seal produces purely positive Ceff throughout the whirling frequency range for all operation conditions, while Ceff for the SS-GR seal shows a significant decrease and transitions to negative value at the crossover frequency fco with increasing rotational speed and inlet preswirl. From a rotordynamic viewpoint, the GS-SR liquid annular seal is a better seal concept for pumps.


Author(s):  
Zhigang Li ◽  
Zhi Fang ◽  
Jun Li ◽  
Zhenping Feng

Abstract This paper deals with numerical predictions of the leakage flow rates, drag power and rotordynamic force coefficients for three types of helically-grooved liquid annular seals, which include a liquid annular seal with helically-grooved stator (GS/SR seal), one with helically-grooved rotor (SS/GR seal), and one with helical grooves on stator and rotor (GS/GR seal). These seals are frequently used for multiple-stage centrifugal pumps as they have the advantage of low leakage (even to zero) due to the “pumping effect” of the helical grooves. However, the static and rotordynamic characteristics of helically-grooved liquid annular seals still are not fully understood, and even more pronounced is the lack of effective numerical models in the literature. A novel transient CFD-based perturbation method was proposed for the predictions of the leakage flow rates, drag power and rotordynamic force coefficients of helically-grooved liquid annular seals. This method is based on the unsteady Reynolds-Averaged Navier–Stokes (RANS) solution with the mesh deformation technique and the multiple reference frame theory. The time-varying fluid-induced forces acting on the rotor/stator surface were obtained as a response to the time-dependent perturbation of the seal stator surface with the periodic motion, based on the multiple-frequency elliptical-orbit stator whirling model. The frequency-independent rotordynamic force coefficients were determined using curve fit and Fast Fourier Transform (FFT) in the frequency domain. The CFD-based method was adequately validated by comparisons to the published experiment data of leakage flow rates and fluid response forces for three types of helically-grooved liquid annular seals. Based on the transient CFD-based perturbation method, numerical results of the leakage flow rates, drag powers and rotordynamic force coefficients were presented and compared for three types of helically-grooved liquid annular seals at five rotational speeds (n = 0.5 krpm, 1.0 krpm, 2.0 krpm, 3.0 krpm and 4.0 krpm), paying special attention to the effective stiffness coefficient and effective damping coefficient. Results show that the GS/GR seal has the best sealing capability, followed by the GS/SR seal and then the SS/GR seal. The leakage flow rate of all three helically-grooved seals monotonically decreases with the increasing rotational speed. The GS/SR seal possesses the best stiffness and damping capability, followed by the SS/GR seal and then the GS/GR seal. Rotordynamic instability problems are more likely caused by the GS/GR seal in multi-stage centrifugal pumps. From a rotordynamic viewpoint, the GS/SR helically-grooved liquid annular seal is a better seal concept for multi-stage centrifugal pumps.


1982 ◽  
Vol 104 (1) ◽  
pp. 211-214
Author(s):  
J. W. Murdock

This paper is concerned with the computation of the theoretical critical flow of dry saturated steam through passages over a range of 1 psia (7 kPa) to the critical pressure of 3208.2 psia (22.12 MPa). Two computational methods are used: a theoretical method using ideal gas relations, and a flow maximization method using actual saturated steam properties. An equation is developed and based on the theoretical equation that yields flow rates that have an average deviation of 0.1 percent and a maximum deviation of 0.3 percent from the flow rate found by flow maximization. It is also demonstrated that Napier’s equation currently recommended by PTC 25.3-1976 “Safety and Relief Valves” is unsatisfactory for the calculation of theoretical critical flow rates.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


2021 ◽  
pp. 1-21
Author(s):  
Z. Hao ◽  
X. Yang ◽  
Z. Feng

Abstract Particulate deposits in aero-engine turbines change the profile of blades, increase the blade surface roughness and block internal cooling channels and film cooling holes, which generally leads to the degradation of aerodynamic and cooling performance. To reveal particle deposition effects in the turbine, unsteady simulations were performed by investigating the migration patterns and deposition characteristics of the particle contaminant in a one-stage, high-pressure turbine of an aero-engine. Two typical operating conditions of the aero-engine, i.e. high-temperature take-off and economic cruise, were discussed, and the effects of particle size on the migration and deposition of fly-ash particles were demonstrated. A critical velocity model was applied to predict particle deposition. Comparisons between the stator and rotor were made by presenting the concentration and trajectory of the particles and the resulting deposition patterns on the aerofoil surfaces. Results show that the migration and deposition of the particles in the stator passage is dominated by the flow characteristics of fluid and the property of particles. In the subsequential rotor passage, in addition to these factors, particles are also affected by the stator–rotor interaction and the interference between rotors. With higher inlet temperature and larger diameter of the particle, the quantity of deposits increases and the deposition is distributed mainly on the Pressure Side (PS) and the Leading Edge (LE) of the aerofoil.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Author(s):  
Zhihang Song ◽  
Bruce T. Murray ◽  
Bahgat Sammakia

The integration of a simulation-based Artificial Neural Network (ANN) with a Genetic Algorithm (GA) has been explored as a real-time design tool for data center thermal management. The computation time for the ANN-GA approach is significantly smaller compared to a fully CFD-based optimization methodology for predicting data center operating conditions. However, difficulties remain when applying the ANN model for predicting operating conditions for configurations outside of the geometry used for the training set. One potential remedy is to partition the room layout into a finite number of characteristic zones, for which the ANN-GA model readily applies. Here, a multiple hot aisle/cold aisle data center configuration was analyzed using the commercial software FloTHERM. The CFD results are used to characterize the flow rates at the inter-zonal partitions. Based on specific reduced subsets of desired treatment quantities from the CFD results, such as CRAC and server rack air flow rates, the approach was applied for two different CRAC configurations and various levels of CRAC and server rack flow rates. Utilizing the compact inter-zonal boundary conditions, good agreement for the airflow and temperature distributions is achieved between predictions from the CFD computations for the entire room configuration and the reduced order zone-level model for different operating conditions and room layouts.


Author(s):  
Carmen Virginia Palau ◽  
Juan Manzano ◽  
Iban Balbastre Peralta ◽  
Benito Moreira de Azevedo ◽  
Guilherme Vieira do Bomfim

To maintain quality measurement of water consumption, it is necessary to know the metrology of single-jet water meters over time. Knowing the accuracy of these instruments over time allows establishing a metrological operation period for different flow rates. This will aid water companies to optimize management and reduce economic losses due to unaccounted water consumption. This study analyzed the influence of time on the measurement error of single-jet water meters to evaluate the deterioration of the equipment and, with that, launch the metrological operation period. According to standards 8316 and 4064 of the International Organization for Standardization (ISO), 808 meters of metrological Class B were evaluated in six water supplies, with age ranges of 3.7 to 16.4 years of use. The measurement error was estimated by comparing the volume measured in a calibrated tank with the volume registered by the meters at flow rates of 30, 120, 750 and 1,500 L h-1. The metrological operation period of the meters was obtained for each flow rate by the relation between error of measurement and time of use (simple linear regression). According to the results, the majority of the equipment presents increasing under-registration errors over time, more pronounced at low flow rates and with less favorable operating conditions. The metrological operation period for flow rates of 30, 120, 750 and 1,500 L h-1 is estimated at approximately 3, 8, 14 and 13 years. This operation period combined with consumption patterns of users will establish the best time to replace the meters.


Sign in / Sign up

Export Citation Format

Share Document