scholarly journals Loop Selection for Multilevel Nested Loops Using a Genetic Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Kai Nie ◽  
Qinglei Zhou ◽  
Hong Qian ◽  
Jianmin Pang ◽  
Jinlong Xu ◽  
...  

Loop selection for multilevel nested loops is a very difficult problem, for which solutions through the underlying hardware-based loop selection techniques and the traditional software-based static compilation techniques are ineffective. A genetic algorithm- (GA-) based method is proposed in this study to solve this problem. First, the formal specification and mathematical model of the loop selection problem are presented; then, the overall framework for the GA to solve the problem is designed based on the mathematical model; finally, we provide the chromosome representation method and fitness function calculation method, the initial population generation algorithm and chromosome improvement methods, the specific implementation methods of genetic operators (crossover, mutation, and selection), the offspring population generation method, and the GA stopping criterion during the GA operation process. Experimental tests with the SPEC2006 and NPB3.3.1 standard test sets were performed on the Sunway TaihuLight supercomputer. The test results indicated that the proposed method can achieve a speedup improvement that is superior to that by the current mainstream methods, which confirm the effectiveness of the proposed method. Solving the loop selection problem of multilevel nested loops is of great practical significance for exploiting the parallelism of general scientific computing programs and for giving full play to the performance of multicore processors.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Gilseung Ahn ◽  
Sun Hur

In cloud manufacturing, customers register customized requirements, and manufacturers provide appropriate services to complete the task. A cloud manufacturing manager establishes manufacturing schedules that determine the service provision time in a real-time manner as the requirements are registered in real time. In addition, customer satisfaction is affected by various measures such as cost, quality, tardiness, and reliability. Thus, multiobjective and real-time scheduling of tasks is important to operate cloud manufacturing effectively. In this paper, we establish a mathematical model to minimize tardiness, cost, quality, and reliability. Additionally, we propose an approach to solve the mathematical model in a real-time manner using a multiobjective genetic algorithm that includes chromosome representation, fitness function, and genetic operators. From the experimental results, we verify whether the proposed approach is effective and efficient.


2020 ◽  
Author(s):  
Jiawei LI ◽  
Tad Gonsalves

This paper presents a Genetic Algorithm approach to solve a specific examination timetabling problem which is common in Japanese Universities. The model is programmed in Excel VBA programming language, which can be run on the Microsoft Office Excel worksheets directly. The model uses direct chromosome representation. To satisfy hard and soft constraints, constraint-based initialization operation, constraint-based crossover operation and penalty points system are implemented. To further improve the result quality of the algorithm, this paper designed an improvement called initial population pre-training. The proposed model was tested by the real data from Sophia University, Tokyo, Japan. The model shows acceptable results, and the comparison of results proves that the initial population pre-training approach can improve the result quality.


Author(s):  
Sushrut Kumar ◽  
Priyam Gupta ◽  
Raj Kumar Singh

Abstract Leading Edge Slats are popularly being put into practice due to their capability to provide a significant increase in the lift generated by the wing airfoil and decrease in the stall. Consequently, their optimum design is critical for increased fuel efficiency and minimized environmental impact. This paper attempts to develop and optimize the Leading-Edge Slat geometry and its orientation with respect to airfoil using Genetic Algorithm. The class of Genetic Algorithm implemented was Invasive Weed Optimization as it showed significant potential in converging design to an optimal solution. For the study, Clark Y was taken as test airfoil. Slats being aerodynamic devices require smooth contoured surfaces without any sharp deformities and accordingly Bézier airfoil parameterization method was used. The design process was initiated by producing an initial population of various profiles (chromosomes). These chromosomes are composed of genes which define and control the shape and orientation of the slat. Control points, Airfoil-Slat offset and relative chord angle were taken as genes for the framework and different profiles were acquired by randomly modifying the genes within a decided design space. To compare individual chromosomes and to evaluate their feasibility, the fitness function was determined using Computational Fluid Dynamics simulations conducted on OpenFOAM. The lift force at a constant angle of attack (AOA) was taken as fitness value. It was assigned to each chromosome and the process was then repeated in a loop for different profiles and the fittest wing slat arrangement was obtained which had an increase in CL by 78% and the stall angle improved to 22°. The framework was found capable of optimizing multi-element airfoil arrangements.


Author(s):  
Ahmed Abdullah Farid ◽  
Gamal Selim ◽  
Hatem Khater

Breast cancer is a significant health issue across the world. Breast cancer is the most widely-diagnosed cancer in women; early-stage diagnosis of disease and therapies increase patient safety. This paper proposes a synthetic model set of features focused on the optimization of the genetic algorithm (CHFS-BOGA) to forecast breast cancer. This hybrid feature selection approach combines the advantages of three filter feature selection approaches with an optimize Genetic Algorithm (OGA) to select the best features to improve the performance of the classification process and scalability. We propose OGA by improving the initial population generating and genetic operators using the results of filter approaches as some prior information with using the C4.5 decision tree classifier as a fitness function instead of probability and random selection. The authors collected available updated data from Wisconsin UCI machine learning with a total of 569 rows and 32 columns. The dataset evaluated using an explorer set of weka data mining open-source software for the analysis purpose. The results show that the proposed hybrid feature selection approach significantly outperforms the single filter approaches and principal component analysis (PCA) for optimum feature selection. These characteristics are good indicators for the return prediction. The highest accuracy achieved with the proposed system before (CHFS-BOGA) using the support vector machine (SVM) classifiers was 97.3%. The highest accuracy after (CHFS-BOGA-SVM) was 98.25% on split 70.0% train, remainder test, and 100% on the full training set. Moreover, the receiver operating characteristic (ROC) curve was equal to 1.0. The results showed that the proposed (CHFS-BOGA-SVM) system was able to accurately classify the type of breast tumor, whether malignant or benign.


2010 ◽  
Vol 44-47 ◽  
pp. 3657-3661 ◽  
Author(s):  
Hao Pan ◽  
Wen Jun Hou ◽  
Tie Meng Li

To improve the efficiency of Assembly Sequences Planning (ASP), a new approach based on heuristic assembly knowledge and genetic algorithm was proposed. First, Connection Graph of Assembly (CGA) was introduced, and then, assembly knowledge was described in the form of Assembly Rings, on that basis, the assembly connection graph model containing Assembly Rings was defined, and the formation of initial population algorithm was given. In addition, a function was designed to measure the feasible assembly and then the genetic algorithm fitness function was given. Finally, an example was shown to illustrate the effectiveness of the algorithm.


2015 ◽  
Vol 713-715 ◽  
pp. 1737-1740
Author(s):  
Ying Ying Duan ◽  
Kang Zhou ◽  
Wen Bo Dong ◽  
Kai Shao

The first minimum spanning tree of length constraint problem (MSTLCP) is put forward, which can not be solved by traditional algorithms. In order to solve MSTLCP, improved genetic algorithm is put forward based on the idea of global and feasible searching. In the improved genetic algorithm, chromosome is generated to use binary-encoding, and more reasonable fitness function of improved genetic algorithm is designed according to the characteristics of spanning tree and its cotree; in order to ensure the feasibility of chromosome, more succinct check function is introduced to three kinds of genetic operations of improved genetic algorithm (generation of initial population, parental crossover operation and mutation operation); three kinds of methods are used to expand searching scope of algorithm and to ensure optimality of solution, which are as follows: the strategy of preserving superior individuals is adopted, mutation operation is improved in order to enhance the randomness of the operation, crossover rate and mutation rate are further optimized. The validity and correctness of improved genetic algorithm solving MSTLCP are explained by a simulate experiment where improved genetic algorithm is implemented using C programming language. And experimental results are analyzed: selection of population size and iteration times determines the efficiency and precision of the simulate experiment.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The Casse-tête board puzzle consists of an n×n grid covered with n^2 tokens. m<n^2 tokens are deleted from the grid so that each row and column of the grid contains an even number of remaining tokens. The size of the search space is exponential. This study used a genetic algorithm (GA) to design and implement solutions for the board puzzle. The chromosome representation is a matrix of binary permutations. Variants for two crossover operators and two mutation operators were presented. The study experimented with and compared four possible operator combinations. Additionally, it compared GA and simulated annealing (SA)-based solutions, finding a 100% success rate (SR) for both. However, the GA-based model was more effective in solving larger instances of the puzzle than the SA-based model. The GA-based model was found to be considerably more efficient than the SA-based model when measured by the number of fitness function evaluations (FEs). The Wilcoxon signed-rank test confirms a significant difference among FEs in the two models (p=0.038).


Author(s):  
Tan Zhi ◽  
Zhang Yuting

The node localization technology is a foundation for practical application in wireless sensor networks. According to DV-HOP positioning algorithm in wireless sensor network low precision, the defect of inaccurate positioning, this paper presents an optimization algorithm of improved DV-HOP based on genetic algorithm. The algorithm is to redefine the scope of initial population, the reference weight, redesigned the fitness function and selection of anchor nodes. The simulation results show that compared with the traditional DV - HOP algorithm, the algorithm without any increase in the node hardware overhead on the basis of significantly higher positioning accuracy.


2012 ◽  
Vol 546-547 ◽  
pp. 961-966
Author(s):  
Fei Xiang ◽  
Shan Li

For power plant boiler combustion control system has large inertia, nonlinear and other complex characteristics, a control algorithm of PID optimized by means of adaptive immune genetic algorithm is presented. A variety of improved schemes of GA were designed, include: initial population generating scheme, fitness function design scheme, immunization strategy, adaptive crossover probability and adaptive mutation probability design scheme. By taking the rise time, error integral and overshoot of system response as the performance index, and using genetic algorithm for real-coded of PID parameters, then a group of optimal values were obtained. Simulation results show that the method has a good dynamic performance, superior to the conventional PID controller.


2011 ◽  
Vol 230-232 ◽  
pp. 978-981
Author(s):  
Yan Feng Xing ◽  
Yan Song Wang ◽  
Xiao Yu Zhao

This paper proposes a genetic algorithm to generate and optimize assembly sequences for compliant assemblies. An assembly modeling is presented to describe the geometry of the assembly, which includes three sets of parts, relationships and joints among the parts. Based on the assembly modeling, an assembly sequence is denoted as an individual, which is assigned an evaluation function that consists of the fitness and constraint functions. The fitness function is used to evaluate feasible sequences; in addition, the constraint function is employed to evolve unfeasible sequences. The genetic algorithm starts with a randomly initial population of chromosomes, evolves new populations by using reproduction, crossover and mutation operations, and terminates until acceptable sequences output. Finally an auto-body side assembly is used to illustrate the algorithm of assembly sequence generation and optimization.


Sign in / Sign up

Export Citation Format

Share Document