scholarly journals Stability Analysis of Milling Process with Variable Spindle Speed and Pitch Angle considering Helix Angle and Process Phase Difference

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Gang Jin ◽  
Haotian Jiang ◽  
Jianxin Han ◽  
Zhanjie Li ◽  
Hua Li ◽  
...  

Suppression of milling chatter by disrupting regenerative effect is a well-known method to obtain higher cutting stability domain. In this paper, a dynamic model of the milling process with variable spindle speed and pitch angle considering helix angle and process phase difference is presented. Then, an updated semidiscretization method is applied to obtain the stability chart. After the effectiveness of the proposed method is confirmed by comparisons with the previously published works and the time-domain simulations, lots of analyses are conducted to deeply evaluate the influence of the helix angle, the process phase difference, and feed per tooth on milling stability. Results show that the change of helix angle can result in significant stability discrepancies for both high-speed and low-speed regions. Though the process phase difference has the randomness and immeasurability in the practical application, it has an important influence on the stability and will result in a periodic evolution of the stability with a period π. Also, its recommended values are given for the practical milling process.

2014 ◽  
Vol 988 ◽  
pp. 253-256
Author(s):  
Jun Wei Liu ◽  
Xiao Jun Yang

Zirconia has been widely concerned in dental restoration duo to its excellent properties, but its high hardness make direct milling inefficient, while pre-sintering zirconia has good machinability. By single factor experiment in high-speed finish milling on 900°C pre-sintering zirconia, effect of four milling process parameters’ change on surface roughness was analyzed, and process sensitivity and relative sensitivity were put forward to compare the effect degree and to optimize milling parameters’ domains respectively. Roughness models are established on each parameter, and analysis results show the effect degree in order of spindle speed, feed engagement, cutting width, and cutting depth, spindle speed in them is a main factor. Based on relative sensitivity, milling parameters stability domain and instability domain are presented.


Author(s):  
N-C Tsai ◽  
D-C Chen ◽  
R-M Lee

This paper presents how real-time chatter prevention can be realized by feedback of an acoustic cutting signal. The efficacy of the proposed adaptive spindle speed tuning algorithm is verified by intensive experimental simulations. A pair of microphones, perpendicular to each other, is used to acquire the acoustic cutting signal resulting from milling chatter. A real-time feedback control loop is constructed for spindle speed compensation in such a way to ensure that the milling process is within the stability zone of the stability lobe diagram. The acoustic chatter signal index (ACSI) and the spindle speed compensation strategy (SSCS) are proposed to quantify the acoustic signal and actively to tune the spindle speed respectively. By converting the acoustic feedback signal into the ACSI, an appropriate spindle speed compensation rate (SSCR) can be determined by the SSCS based on a real-time chatter level or the ACSI. Accordingly, the compensation command, referred to as added-on voltage (AOV), is applied to increase/decrease the spindle motor speed. By employing the commercial software MATLAB/Simulink and the dSpace DS1104 interface module to implement the controller, the proposed chatter prevention algorithm is practically verified by intensive experiments. By inspection on the precision and quality of the workpiece surface after milling, the efficacy of the real-time chatter prevention strategy via acoustic signal feedback is further assured.


2014 ◽  
Vol 13 (04) ◽  
pp. 247-255 ◽  
Author(s):  
Kunlong Wen ◽  
Houjun Qi ◽  
Gang Jin

In order to further research the chatter vibration in high-speed milling, in this paper, a new regenerative chatter vibration model, considering the effect of milling force coefficients dependent on the spindle speed (MFCDSS) on the stability of high-speed milling process is proposed, and then milling stability lobe diagram is obtained, based on full-discretization method (FDM). The variable tendency of the stability of milling system is analyzed by comparisons in case of different radial immersion ratios in low-speed and high-speed milling regions, respectively. It is found that great stability predicting differences occur, especially in high-speed region when the MFCDSS is considered. This model can further supplement the theory of stability of high-speed milling process, it has certain engineering guidance significance in the selection of high-speed milling parameters.


Author(s):  
Hongji Zhang ◽  
Yuanyuan Ge ◽  
Hong Tang ◽  
Yaoyao Shi ◽  
Zengsheng Li

Within the scope of high speed milling process parameters, analyzed and discussed the effects of spindle speed, feed rate, milling depth and milling width on milling forces in the process of high speed milling of AM50A magnesium alloy. At the same time, the influence of milling parameters on the surface roughness of AM50A magnesium alloy has been revealed by means of the measurement of surface roughness and surface micro topography. High speed milling experiments of AM50A magnesium alloy were carried out by factorial design. Form the analysis of experimental results, The milling parameters, which have significant influence on milling force in high speed milling of AM50A magnesium alloy, are milling depth, milling width and feed speed, and the nonlinear characteristics of milling force and milling parameters. The milling force decreases with the increase of spindle in the given mill parameters. For the effects of milling parameters on surface quality of the performance, in the milling depth and feeding speed under certain conditions with the spindle speed increases the surface quality of AM50A magnesium alloy becomes better with the feed speed increases the surface quality becomes poor. When the spindle speed is greater than 12000r/min, the milling depth is less than 0.2mm, and the feed speed is less than 400mm/min, the milling surface quality can be obtained easily.


2020 ◽  
Vol 37 (8) ◽  
pp. 387-393
Author(s):  
Qiang Guo ◽  
Ming-Yang Zhang ◽  
Yuan-Shin Lee ◽  
Zhi-Bo Yang ◽  
Yan Jiang ◽  
...  

2020 ◽  
Vol 10 (10) ◽  
pp. 3646 ◽  
Author(s):  
Yonggang Mei ◽  
Rong Mo ◽  
Huibin Sun ◽  
Bingbing He ◽  
Kun Bu

Cutting chatter is extremely harmful to the machining process, and it is of great significance to eliminate chatter through analyzing the stability of the machining process. In this work, the stability of the milling process with multiple delays is investigated. Considering the regeneration effect, the dynamics of the milling process with variable pitch cutter is modeled as periodic coefficients delayed differential equations (DDEs) with multiple delays. An adaptive variable-step numerical integration method (AVSNIM) considering the effect of the helix angle is developed firstly, which can discretize the cutting period accurately, thereby improving the calculation accuracy of the stability limit of the milling process. The accuracy and efficiency of the AVSNIM are verified through a benchmark milling model. Subsequently, a novel spindle speed-dependent discretization algorithm is proposed, which is combined with the AVSNIM to further reduce the calculation time of the stability lobes diagram (SLD). The simulation experiment results demonstrate that the proposed algorithm can effectively reduce the calculation time.


Author(s):  
Tomoyuki Takahashi ◽  
Jun Iwasaki ◽  
Hiroshi Hosaka

The gyroscopic power generator produces a high-speed rotation of magnets from low-frequency vibrations and supplies electric power to information and communication devices that use human vibrations in daily life. In this paper, in order to increase the stability and the output power of the generator, a simple equation that indicates the steady state approximate solution of the phase difference is derived. From the derived solution, a control method for the steady state is verified by the simulations. In order to maintain the stability and high power generation for variable input vibrations, the impedance control method using the phase difference is developed and verified experimentally.


2010 ◽  
Vol 443 ◽  
pp. 353-358 ◽  
Author(s):  
Harshad A. Sonawane ◽  
Suhas S. Joshi

The ball end milling process, commonly used for generating complex shapes, involves continuous variation in the uncut chip dimensions, which depends on the cutter geometry and the machining parameters. The proposed analytical model evaluates the undeformed and the deformed chip dimensions including chip length, width and thickness. The undeformed and deformed chip dimensions, is a function of cutter rotation angle, instantaneous cutter radius, helix angle, and other processing parameters. The surface quality, in the form of surface roughness, during high-speed ball end milling of Inconel 718 is also analysed in this paper.


2006 ◽  
Vol 526 ◽  
pp. 37-42 ◽  
Author(s):  
Francisco Javier Campa ◽  
Luis Norberto López de Lacalle ◽  
S. Herranz ◽  
Aitzol Lamikiz ◽  
A. Rivero

In this paper, a 3D dynamic model for the prediction of the stability lobes of high speed milling is presented, considering the combined flexibility of both tool and workpiece. The main aim is to avoid chatter vibrations on the finish milling of aeronautical parts, which include thin walls and thin floors. In this way the use of complex fixtures is eliminated. Hence, an accurate selection of both axial depth of cut and spindle speed can be accomplished. The model has been validated by means of a test device that simulates the behaviour of a thin floor.


Sign in / Sign up

Export Citation Format

Share Document