scholarly journals Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zijian Zhou ◽  
Dake Qi ◽  
Quan Gan ◽  
Fang Wang ◽  
Bengang Qin ◽  
...  

Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.

2019 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Marzia Malcangio

AbstractBackgroundAcute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia).Critical role for immune system cells in chronic painPreclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain.Immune system reactions to peripheral nerve injuriesAt the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX3CR1)-expressing monocytes/macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuro-immune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a pro-inflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG.Immune system mechanisms in the central nervous systemIn the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as P2X4/BDNF/GABAA, P2X7/Cathepsin S/Fractalkine/CX3CR1, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms.Conclusions and implicationsDefinition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1566 ◽  
Author(s):  
Marisol Godínez-Rubí ◽  
Daniel Ortuño-Sahagún

MicroRNAs (miRNAs) are small noncoding RNAs that function as epigenetic modulators regulating almost any gene expression. Similarly, other noncoding RNAs, as well as epigenetic modifications, can regulate miRNAs. This reciprocal interaction forms a miRNA-epigenetic feedback loop, the deregulation of which affects physiological processes and contributes to a great diversity of diseases. In the present review, we focus on miR-615, a miRNA highly conserved across eutherian mammals. It is involved not only during embryogenesis in the regulation of growth and development, for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It therefore serves as a biomarker for several types of cancer, and recently has also been found to be involved in reparative processes and neural repair. In addition, we present the pleiad of functions in which miR-615 is involved, as well as their multiple target genes and the multiple regulatory molecules involved in its own expression. We do this by introducing in a comprehensible way the reported knowledge of their actions and interactions and proposing an integral view of its regulatory mechanisms.


Author(s):  
M Dlamini

Neuromonitoring is used during surgery to assess the functional integrity of the brain, brain stem, spinal cord, or peripheral nerves. The aim of monitoring is to prevent permanent damage by early intervention when changes are detected in the monitor. Neuromonitoring is also used to map areas of the nervous system in order to guide management in some cases. The best neuromonitor remains the awake patient. In the conscious state, the function of individual parts of the nervous system and the complex interactions of its different parts can be assessed more accurately. However, most surgical procedures involving the nervous system require general anaesthesia. Procedures that require neuromonitoring can have changes in their monitored parameters corrected by modifying the surgical approach or by having the anaesthesiologist manipulate the parameters under their control. An ideal neuromonitor would be one that is specific for the parameter of interest, and gives reliable, reproducible, or continuous results.


2008 ◽  
Vol 8 ◽  
pp. 757-761 ◽  
Author(s):  
Pierre A. Guertin

Learning and memory traditionally have been associated with cellular processes occurring in a specialized region of the brain called the hippocampus. However, recent data have provided strong evidence to suggest that comparable processes are also expressed in the spinal cord. Experiments performed mainly in spinal cord–transected animals have reported that, indeed, spinal-mediated functions, such as the stretch or flexion reflex, pain signaling, micturition, or locomotion, may undergo plasticity changes associated with partial functional recovery that occur spontaneously or conditionally. Many of the underlying cellular mechanisms strikingly resemble those found in the hippocampus. This mini-review reports, mainly, animal data that support the idea that other areas of the central nervous system, such as the spinal cord, can also learn and remember.


2019 ◽  
Author(s):  
Joana F. Silva-Rodrigues ◽  
Cátia F. Patrício-Rodrigues ◽  
Vicente de Sousa-Xavier ◽  
Pedro M. Augusto ◽  
Ana C. Fernandes ◽  
...  

AbstractAxon ensheathment is fundamental for fast impulse conduction and the normal physiological functioning of the nervous system. Defects in axonal insulation lead to debilitating conditions, but despite its importance, the molecular players responsible are poorly defined. Here, we identify Ral GTPase as a key player in axon ensheathment in Drosophila larval peripheral nerves. We demonstrate through genetic analysis that Ral action through the exocyst complex is sufficient and necessary in wrapping glial cells to regulate their growth and development. We suggest that the Ral-exocyst pathway controls the targeting of secretory vesicles for membrane growth or for the secretion of a wrapping glia-specific factor that itself regulates growth. In summary, our findings provide a new molecular understanding of the process by which axons are ensheathed in vivo, a process critical for normal neuronal function.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244244
Author(s):  
Jamasb Joshua Sayadi ◽  
Lohrasb Sayadi ◽  
Ellen Satteson ◽  
Mustafa Chopan

Dietary interventions such as intermittent fasting and the ketogenic diet have demonstrated neuroprotective effects in various models of neurological insult. However, there has been a lack of evaluation of these interventions from a surgical perspective despite their potential to augment reparative processes that occur following nerve injury. Thus, we sought to analyze the effects of these dietary regimens on nerve regeneration and repair by critical appraisal of the literature. Following PRISMA guidelines, a systematic review was performed to identify studies published between 1950 and 2020 that examined the impact of either the ketogenic diet or intermittent fasting on traumatic injuries to the spinal cord or peripheral nerves. Study characteristics and outcomes were analyzed for each included article. A total of 1,890 articles were reviewed, of which 11 studies met inclusion criteria. Each of these articles was then assessed based on a variety of qualitative parameters, including type of injury, diet composition, timing, duration, and outcome. In total, seven articles examined the ketogenic diet, while four examined intermittent fasting. Only three studies examined peripheral nerves. Neuroprotective effects manifested as either improved histological or functional benefits in most of the included studies. Overall, we conclude that intermittent fasting and the ketogenic diet may promote neuroprotection and facilitate the regeneration and repair of nerve fibers following injury; however, lack of consistency between the studies in terms of animal models, diet compositions, and timing of dietary interventions preclude synthesis of their outcomes as a whole.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Eun Jung Sohn ◽  
Hwan Tae Park

Schwann cells (SCs) contribute to nerve repair following injury; however, the underlying molecular mechanism is poorly understood. MicroRNAs (miRNAs), which are short noncoding RNAs, have been shown to play a role in neuronal disease. In this work, we show that miRNAs regulate the peripheral nerve system by modulating the migration and proliferation of SCs. Thus, miRNAs expressed in peripheral nerves may provide a potential therapeutic target for peripheral nerve injury or repair.


2006 ◽  
Vol 105 (1) ◽  
pp. 146-153 ◽  
Author(s):  
Stephen E. Abram ◽  
Johnny Yi ◽  
Andreas Fuchs ◽  
Quinn H. Hogan

Background Nerve injury that produces behavioral changes of allodynia and hyperalgesia in animals is associated with electrophysiologic changes in dorsal root ganglion (DRG) cells. The introduction of drugs into the DRG or the peripheral nerve that alter calcium, sodium, or potassium channel activity may be of therapeutic benefit after nerve injury. For this reason, the authors sought to determine whether drugs that do not ordinarily cross the blood-nerve barrier will enter the DRG after intravenous or regional injection and to determine whether nerve injury alters drug access to DRGs or peripheral nerves. Methods Both intact and spinal nerve-ligated rats were injected with sodium fluorescein by intravenous, intrathecal, peri-DRG, perisciatic, and epidural routes. DRG, sciatic nerve, and spinal cord tissues were harvested and frozen, and histologic sections were analyzed quantitatively for tissue fluorescence. Results In both intact and nerve-injured animals, fluorescein accumulated in DRGs after intravenous, peri-DRG, and epidural injection. There was accumulation in the proximal portion of the ganglion after intrathecal injection. Minimal amounts of fluorescein were found in the sciatic nerve in intact animals after intravenous or perineural injection, but substantial amounts were found in some nerve fascicles in nerve-injured animals after both intravenous and perineural injection. There was almost no fluorescein found in the spinal cord except after intrathecal administration. Conclusions In both intact and nerve-injured animals, fluorescein accumulates freely in the DRG after intravenous, epidural, or paravertebral injection. The sciatic nerve is relatively impermeable to fluorescein, but access by either systemic or regional injection is enhanced after nerve injury.


Author(s):  
Stephen R. Humble

Devor and Wall, in a pioneering electrophysiological study, examined the change in somatic receptive fields in the dorsal horn of the spinal cord after nerve injury. Rather than the anticipated loss of an area of electrophysiological perception, the system demonstrated ‘plasticity’ whereby novel receptive fields, remote to the corresponding area of damage, were evident. The authors postulated that this neuroplasticity occurred via a hitherto undefined spinal mechanism, which lead to an explosion of interest and research to elucidate the mechanisms of central plasticity. In this truly landmark paper, the idea of the nervous system being an inherently ‘hard-wired’ structure was made redundant and the concept of neuroplasticity was given robust form.


2021 ◽  
Vol XVIII (2) ◽  
pp. 500-500
Author(s):  
V. N. Leshchinsky

The author gives a medical history and the results of a detailed microscopic examination of a case in which he was diagnosed with multiple tumors of the nervous system during his lifetime. Based on post mortem research, which revealed the existence of numerous tumors of the membranes of the spinal cord and brain, peripheral nerves and roots, the author views this case as a rare form of Recklingausens disease, in which there are no skin tumors that occur in almost all cases of this disease.


Sign in / Sign up

Export Citation Format

Share Document