scholarly journals Seismic Resistance Properties of Improved Dry-Type Beam-Column Joint: An Experimental Research

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei Ma ◽  
Fan Yang ◽  
Pan Hu ◽  
Haiyi Liang ◽  
Kai Xu

Dry-type joints are an advanced type of sustainable beam-column connection mode used in the prefabricated concrete frame structural system. This paper proposed an improvement scheme for high-strength bolt dry-type joints and designed a new type of common bolt dry-type joints. A pseudo test involving low-cycle repeated loading is conducted to assess the seismic resistance properties of new joints including damage mode, hysteretic curve, skeleton curve, and ductility factor. Numerical simulation is applied to validate the rationality of experimental results. It is found that when the bending capacity of the end block of the beam is consistent with that of the bolt, the deformation of the bolt will no longer increase greatly after a period of large deformation; at this period, the bolt does not fully enter the plastic stage, but at this time, the end block of the beam begins to appear large cracks and enter the plastic deformation and has good energy dissipation performance.

2014 ◽  
Vol 1079-1080 ◽  
pp. 160-165
Author(s):  
Jian Bing Yu ◽  
Zheng Xing Guo ◽  
Dong Zhi Guan

On the basis of the domestic and overseas scholars’ research, it is innovative to put forward a new precast frame beam-to-column connection. One full-scale beam-to-column connection in a precast concrete(PC)frame and a beam-to-column connection in a cast-in-place concrete structures were tested under uni-directional cyclic loading that simulated earthquake-type motions. The new-type beam-to-column joint in a precast concrete frame consisted of cast-in-place columns and precast beams. Test results showed that(a)The property and action of precast connections are similar to the cast-in-place connection, it showed that both precast connections and cast-in-place connection have similar seismic performance; (b) The cracking load of precast connection are similar to the cast-in-place connection; (c) All the columns of all specimens did not destroy, it illustrate that it conform to the strong column weak beam. (d) In this experiment test, because the control factor use the bending capacity of beam, it also play the same plastic hinge mechanism as the traditional component. All the longitudinal reinforcement destruction ahead of stirrup in beams, which should be confirmed the guiding ideology of strong shear weak bending. On the basis of the test results, design considerations for the beam-to column connection were recommended.


2021 ◽  
Vol 11 (22) ◽  
pp. 10990
Author(s):  
Kewei Ding ◽  
Da Zong ◽  
Yunlin Liu ◽  
Shulin He ◽  
Wanyu Shen

In this paper, a new ALC panel connector was proposed. It has a good engineering economy and high fault tolerance. A quasistatic loading experiment was carried out to verify the feasibility of the external ALC panel steel frame under seismic loading. The test phenomena, hysteretic curve, skeleton curve, stiffness degradation, and energy dissipation of two sets of full-scale specimens were analyzed and discussed. Moreover, the simulation of pendulous Z-panel connectors with different thicknesses was carried out using ABAQUS software. The comparison reveals that the semi-rigid connection has a full hysteresis curve, good energy dissipation capacity, and a 15% increase in peak load capacity. Finally, similar results for different thicknesses in the use of pendulous Z-panel connectors reveal that using the 6 mm connector may be the most economical solution for engineering.


2019 ◽  
Vol 11 (12) ◽  
pp. 3348 ◽  
Author(s):  
Wei Ma ◽  
Yue Li ◽  
Kewei Ding ◽  
Baoquan Cheng ◽  
Jianhua Liu ◽  
...  

Beam–column assembled joint connections are crucial for realizing the industrialization of buildings through prefabrication. This paper focuses on the mechanical properties of a new dry-type high-strength bolt connection joint used in prefabricated buildings. The structural performance properties examined include bearing capacity, stiffness, failure mode, energy dissipation capacity, and deformation performance, all of which are tested through a pseudo static test involving low-cycle repeated loading. The test results show that the failure of the new dry-type beam–column connection joint is through plastic failure, with full hysteretic curve and good energy dissipation performance. The results provide a foundation for the analysis of assembled structural framework systems based on different forms of dry-type connection joints.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


2011 ◽  
Vol 105-107 ◽  
pp. 1250-1254
Author(s):  
Qian Fu ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu

Six concrete piles reinforced with 500MPa fine-grain steel bars were tested under low cycle reversed loading to study the seismic behavior such as failure patterns, characteristics of hysteretic and skeleton curve. Three parameters, longitudinal reinforcement strength, reinforcement ratio and axial compression ratio were taken into consideration. The main failure patterns as well as hysteretic curve of those piles were obtained, and influence of each of the three parameters on the ductile behavior, ability of energy dissipation and law of strength degeneration were analyzed. The experimental results indicate that the mechanical behavior of reinforced concrete low cyclic reversed loading columns with fine grain high strength reinforcement is similar to normal reinforced columns. The concrete piles reinforced with 500MPa fine-grain steel bars show good seismic performance and 500MPa fine-grain steel bars can be used in seismic design.


Sign in / Sign up

Export Citation Format

Share Document