scholarly journals A New Health Condition Detection Method for Planetary Gears Based on Modified Distributed Compressed Sensing and Multiscale Symbol Dynamic Entropy

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhe Wu ◽  
Qiang Zhang ◽  
Zeyu Ma ◽  
Jialong Lu ◽  
Zhiying Qin

Planetary gear transmission system is an important transmission part of large machinery and is prone to failure. Aiming at the problem of how to extract fault information from vibration signals of nonlinear and nonstationary planetary gearboxes, a performance degradation evaluation index of planetary gearboxes based on improved distributed compressed sensing and modified multiscale symbolic dynamic entropy (DCSMDE) is proposed. DCSMDE combines distributed compression sensing with modified multiscale symbol dynamic entropy and solves the problem of strong nonlinearity and strong vibration signal coupling of the planetary transmission system from the homologous signals of multiple sensors. A distributed compression sensing parameter optimization algorithm based on Rényi entropy is proposed, which uses improved distributed compression sensing technology to simultaneously sample, compress, and denoise the multisource vibration data of rotating machinery. DCSMDE is used to calculate the reconstructed signal, extract the features with higher recognition characteristics, and use the change trend of the DCSMDE value to judge the working status of the planetary gearbox. Experimental results show that DCSMDE can be applied to dynamic evolution and fault identification of mechanical systems and accurately classify actual fault signals. It provides a new idea for the classification of planetary gear faults and the recognition of performance degradation.

2019 ◽  
Vol 25 (17) ◽  
pp. 2380-2394
Author(s):  
Yubin Pan ◽  
Rongjing Hong ◽  
Jie Chen ◽  
Weiwei Wu

Due to the low speed and heavy load conditions of slewing bearings, extracting of effective features for fault diagnosis and prediction is difficult but crucial. Moreover, challenges such as large data volumes, unlabeled and multi-source bring more difficulties for advanced prognosis and health management methods. To solve these problems, a novel method for performance degradation assessment of bearings based on raw signals is proposed. In this methodology, a combination of deep auto-encoder (DAE) algorithm and particle filter algorithm is utilized for feature extraction and remaining useful life (RUL) prediction. First, the raw vibration signal is employed to train parameters of a restricted Boltzmann machine to build the DAE model. Through encoding and decoding multi-source data, root mean square error of reconstruction error between the raw signal and reconstructed signal is employed to detect incipient faults of slewing bearings. Then, degradation trend model is established by particle filtering to predict RUL of bearings. The effectiveness of proposed method is validated using simulated and experimental vibration signals. Results illustrate that proposed method can evaluate the performance degradation process and RUL of slewing bearings.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 660 ◽  
Author(s):  
Fang Liu ◽  
Liubin Li ◽  
Yongbin Liu ◽  
Zheng Cao ◽  
Hui Yang ◽  
...  

In real industrial applications, bearings in pairs or even more are often mounted on the same shaft. So the collected vibration signal is actually a mixed signal from multiple bearings. In this study, a method based on Hybrid Kernel Function-Support Vector Regression (HKF–SVR) whose parameters are optimized by Krill Herd (KH) algorithm was introduced for bearing performance degradation prediction in this situation. First, multi-domain statistical features are extracted from the bearing vibration signals and then fused into sensitive features using Kernel Joint Approximate Diagonalization of Eigen-matrices (KJADE) algorithm which is developed recently by our group. Due to the nonlinear mapping capability of the kernel method and the blind source separation ability of the JADE algorithm, the KJADE could extract latent source features that accurately reflecting the performance degradation from the mixed vibration signal. Then, the between-class and within-class scatters (SS) of the health-stage data sample and the current monitored data sample is calculated as the performance degradation index. Second, the parameters of the HKF–SVR are optimized by the KH (Krill Herd) algorithm to obtain the optimal performance degradation prediction model. Finally, the performance degradation trend of the bearing is predicted using the optimized HKF–SVR. Compared with the traditional methods of Back Propagation Neural Network (BPNN), Extreme Learning Machine (ELM) and traditional SVR, the results show that the proposed method has a better performance. The proposed method has a good application prospect in life prediction of coaxial bearings.


2020 ◽  
pp. 107754632095495
Author(s):  
Bing Wang ◽  
Xiong Hu ◽  
Tao X Mei ◽  
Sun D Jian ◽  
Wang Wei

In allusion to the issue of rolling bearing degradation feature extraction and degradation condition clustering, a logistic chaotic map is introduced to analyze the advantages of C0 complexity and a technique based on a multidimensional degradation feature and Gath–Geva fuzzy clustering algorithmic is proposed. The multidimensional degradation feature includes C0 complexity, root mean square, and curved time parameter which is more in line with the performance degradation process. Gath–Geva fuzzy clustering is introduced to divide different conditions during the degradation process. A rolling bearing lifetime vibration signal from intelligent maintenance system bearing test center was introduced for instance analysis. The results show that C0 complexity is able to describe the degradation process and has advantages in sensitivity and calculation speed. The introduced degradation indicator curved time parameter can reflect the agglomeration character of the degradation condition at time dimension, which is more in line with the performance degradation pattern of mechanical equipment. The Gath–Geva fuzzy clustering algorithmic is able to cluster degradation condition of mechanical equipment such as bearings accurately.


Author(s):  
Min-Chun Pan ◽  
Cheng-Xue Wu

Dynamic signals acquired from rotary machines can be characterized by the order tracking (OT) techniques. The extracted order components correspond to the operation of specific machine elements and reflect their current healthy or faulty states. The study extends the angular-velocity Vold–Kalman OT scheme to simultaneously extract multiple order components. Theoretical derivation is illustrated with simulation of processing three synthetic signals to show its merit. Additionally, as an example to validate its effectiveness, the improved OT scheme is used to process pass-by noise emitted from an electric scooter with a planetary-gear-set transmission system. The gear-meshing orders are effectively decoupled from structure-borne resonances.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879087 ◽  
Author(s):  
Lin Zhou ◽  
Qianxiang Yu ◽  
Daozhi Liu ◽  
Ming Li ◽  
Shukai Chi ◽  
...  

Wireless sensors produce large amounts of data in long-term online monitoring following the Shannon–Nyquist theorem, leading to a heavy burden on wireless communications and data storage. To address this problem, compressive sensing which allows wireless sensors to sample at a much lower rate than the Nyquist frequency has been considered. However, the lower rate sacrifices the integrity of the signal. Therefore, reconstruction from low-dimension measurement samples is necessary. Generally, the reconstruction needs the information of signal sparsity in advance, whereas it is usually unknown in practical applications. To address this issue, a sparsity adaptive subspace pursuit compressive sensing algorithm is deployed in this article. In order to balance the computational speed and estimation accuracy, a half-fold sparsity estimation method is proposed. To verify the effectiveness of this algorithm, several simulation tests were performed. First, the feasibility of subspace pursuit algorithm is verified using random sparse signals with five different sparsities. Second, the synthesized vibration signals for four different compression rates are reconstructed. The corresponding reconstruction correlation coefficient and root mean square error are demonstrated. The high correlation and low error result mean that the proposed algorithm can be applied in the vibration signal process. Third, implementation of the proposed approach for a practical vibration signal from an offshore structure is carried out. To reduce the effect of signal noise, the wavelet de-noising technique is used. Considering the randomness of the sampling, many reconstruction tests were carried out. Finally, to validate the reliability of the reconstructed signal, the structure modal parameters are calculated by the Eigensystem realization algorithm, and the result is only slightly different between original and reconstructed signal, which means that the proposed method can successfully save the modal information of vibration signals.


Sign in / Sign up

Export Citation Format

Share Document