scholarly journals Noncoding RNA Roles in Pharmacogenomic Responses to Aspirin: New Molecular Mechanisms for an Old Drug

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mohammad Amin Khazeei Tabari ◽  
Mohammad Amir Mishan ◽  
Mona Moradi ◽  
Mohanna Khandan ◽  
Hooman Khoshhal ◽  
...  

Aspirin, as one of the most frequently prescribed drugs, can have therapeutic effects on different conditions such as cardiovascular and metabolic disorders and malignancies. The effects of this common cardiovascular drug are exerted through different molecular and cellular pathways. Altered noncoding RNA (ncRNA) expression profiles during aspirin treatments indicate a close relationship between these regulatory molecules and aspirin effects through regulating gene expressions. A better understanding of the molecular networks contributing to aspirin efficacy would help optimize efficient therapies for this very popular drug. This review is aimed at discussing and highlighting the identified interactions between aspirin and ncRNAs and their targeting pathways and better understanding pharmacogenetic responses to aspirin.

2020 ◽  
Vol 40 (11) ◽  
pp. 1487-1508
Author(s):  
Gui-Yun Tao ◽  
Muthusamy Ramakrishnan ◽  
Kunnummal Kurungara Vinod ◽  
Kim Yrjälä ◽  
Viswanathan Satheesh ◽  
...  

Abstract Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) is a rapidly growing grass of industrial and ecological importance. However, the molecular mechanisms of its remarkable growth are not well understood. In this study, we investigated the early-stage growth of moso bamboo shoots and defined three different growth stages based on histological and biochemical analyses, namely, starting of cell division (SD), rapid division (RD) and rapid elongation (RE). Further analyses on potentially relevant cellular pathways in these growth stages using multi-omics approaches such as transcriptomics and proteomics revealed the involvement of multiple cellular pathways, including DNA replication, repair and ribosome biogenesis. A total of 8045 differentially expressed genes (DEGs) and 1053 differentially expressed proteins (DEPs) were identified in our analyses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of detected DEGs identified several key biological pathways such as phytohormone metabolism, signal transduction, cell wall development and carbohydrate metabolism. The comparative analysis of proteins displayed that a total of 213 DEPs corresponded with DEGs and 3 significant expression profiles that could be promoting the fast growth of bamboo internodes. Moreover, protein–protein interaction network prediction analysis is suggestive of the involvement of five major proteins of signal transduction, DNA synthesis and RNA transcription, and may act as key elements responsible for the rapid shoot growth. Our work exploits multi-omics and bioinformatic approaches to unfurl the complexity of molecular networks involved in the rapid growth of moso bamboo and opens up questions related to the interactions between the functions played by individual molecular pathway.


2020 ◽  
Vol 17 ◽  
Author(s):  
Asma Babar ◽  
Kifayatullah Mengal ◽  
Abdul Hanan Babar ◽  
Shixin Wu ◽  
Mujahid Ali Shah ◽  
...  

: The world highest and largest altitude area is called the Qinghai-Tibetan plateau (QTB), which harbors unique animal and plant species. Mammals that inhabit the higher altitude regions have adapted well to the hypoxic conditions. One of the main stressors at high altitude is hypoxia. Metabolic responses to hypoxia play important roles in cell survival strategies and some diseases. However, the homeostatic alterations that equilibrate variations in the demand and supply of energy to maintain organismal function in a prolonged low O2 environment persist partly understood, making it problematic to differentiate adaptive from maladaptive responses in hypoxia. Tibetans and yaks are two perfect examples innate to the plateau for high altitude adaptation. By the scan of the whole-genome, EPAS1 and EGLN1 were identified as key genes associated with sustained haemoglobin concentration in high altitude mammals for adaptation. The yak is a much more ancient mammal which has existed on QTB longer than humans, it is, therefore, possible that natural selection represented a diverse group of genes/pathways in yaks. Physiological characteristics are extremely informative in revealing molecular networks associated with inherited adaptation, in addition to the whole-genome adaptive changes at the DNA sequence level. Gene-expression can be changed by a variety of signals originating from the environment, and hypoxia is the main factor amongst them. The hypoxia-inducible factors (HIF-1α and EPAS1/HIF-2α) are the main regulators of oxygen in homeostasis which play a role as maestro regulators of adaptation in hypoxic reaction of molecular mechanisms. (Vague) The basis of this review is to present recent information regarding the molecular mechanism involved in hypoxia that regulates candidate genes and proteins. Many transcriptional responses toward hypoxia are facilitated by HIFs that change the number of gene expressions and help in angiogenesis, erythropoiesis, metabolic reprogramming and metastasis. HIFs also activate several signals highlighting a strong association between hypoxia, the misfolded proteins’ accumulation in the endoplasmic reticulum in stress and activation of unfolded protein response (UPR). It was observed that at high-altitude, pregnancies yield a low birth weight ∼100 g per1000 m of the climb. (Vague) It may involve variation in the events of energy-demanding, like protein synthesis. Prolonged hypobaric hypoxia causes placental ER stress, which in turn, moderates protein synthesis and reduces proliferation. Further, Cardiac hypertrophy by cytosolic Ca2+ raises and Ca2+/calmodulin, calcineurin stimulation, NF-AT3 pathway might be caused by an imbalance in Sarcoplasmic reticulum ER Ca2, might be adaptive in beginning but severe later.


2021 ◽  
Vol 22 (15) ◽  
pp. 7844
Author(s):  
Jason S. Holsapple ◽  
Ben Cooper ◽  
Susan H. Berry ◽  
Aleksandra Staniszewska ◽  
Bruce M. Dickson ◽  
...  

Extracorporeal Shock Wave Therapy (ESWT) is used clinically in various disorders including chronic wounds for its pro-angiogenic, proliferative, and anti-inflammatory effects. However, the underlying cellular and molecular mechanisms driving therapeutic effects are not well characterized. Macrophages play a key role in all aspects of healing and their dysfunction results in failure to resolve chronic wounds. We investigated the role of ESWT on macrophage activity in chronic wound punch biopsies from patients with non-healing venous ulcers prior to, and two weeks post-ESWT, and in macrophage cultures treated with clinical shockwave intensities (150–500 impulses, 5 Hz, 0.1 mJ/mm2). Using wound area measurements and histological/immunohistochemical analysis of wound biopsies, we show ESWT enhanced healing of chronic ulcers associated with improved wound angiogenesis (CD31 staining), significantly decreased CD68-positive macrophages per biopsy area and generally increased macrophage activation. Shockwave treatment of macrophages in culture significantly boosted uptake of apoptotic cells, healing-associated cytokine and growth factor gene expressions and modulated macrophage morphology suggestive of macrophage activation, all of which contribute to wound resolution. Macrophage ERK activity was enhanced, suggesting one mechanotransduction pathway driving events. Collectively, these in vitro and in vivo findings reveal shockwaves as important regulators of macrophage functions linked with wound healing. This immunomodulation represents an underappreciated role of clinically applied shockwaves, which could be exploited for other macrophage-mediated disorders.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Aihua Zhang ◽  
Hui Sun ◽  
Shi Qiu ◽  
Xijun Wang

Traditional Chinese medicine (TCM) formula has been playing a very important role in health protection and disease control for thousands of years. Guided by TCM syndrome theories, formula are designed to contain a combination of various kinds of crude drugs that, when combined, will achieve synergistic efficacy. However, the precise mechanism of synergistic action remains poorly understood. One example is a famous TCM formula Yinchenhao Tang (YCHT), whose efficacy in treating hepatic injury (HI) and Jaundice syndrome, has recently been well established as a case study. We also conducted a systematic analysis of synergistic effects of the principal compound using biochemistry, pharmacokinetics and systems biology, to explore the key molecular mechanisms. We had found that the three component (6,7-dimethylesculetin (D), geniposide (G), and rhein (R)) combination exerts a more robust synergistic effect than any one or two of the three individual compounds by hitting multiple targets. They can regulate molecular networks through activating both intrinsic and extrinsic pathways to synergistically cause intensified therapeutic effects. This paper provides an overview of the recent and potential developments of chemical fingerprinting coupled with systems biology advancing drug discovery towards more agile development of targeted combination therapies for the YCHT.


2002 ◽  
Vol 277 (51) ◽  
pp. 49504-49510 ◽  
Author(s):  
Ji Li ◽  
Peili Chen ◽  
Natasha Sinogeeva ◽  
Myriam Gorospe ◽  
Robert P. Wersto ◽  
...  

Arsenic trioxide (As2O3) is highly effective for the treatment of acute promyelocytic leukemia, even in patients who are unresponsive to all-trans-retinoic acid therapy. As2O3is believed to function primarily by promoting apoptosis, but the underlying molecular mechanisms remain largely unknown. In this report, using cDNA arrays, we have examined the changes in gene expression profiles triggered by clinically achievable doses of As2O3in acute promyelocytic leukemia NB4 cells.CASPASE-10expression was found to be potently induced by As2O3. Accordingly, caspase-10 activity also substantially increased in response to As2O3treatment. A selective inhibitor of caspase-10, Z-AEVD-FMK, effectively blocked caspase-3 activation and significantly attenuated As2O3-triggered apoptosis. Interestingly, the treatment of NB4 cells with As2O3markedly increased histone H3 phosphorylation at serine 10, an event that is associated with acetylation of the lysine 14 residue. Chromatin immunoprecipitation assays revealed that As2O3potently enhances histone H3 phosphoacetylation at theCASPASE-10locus. These results suggest that the effect of As2O3on histone H3 phosphoacetylation at theCASPASE-10gene may play an important role in the induction of apoptosis and thus contribute to its therapeutic effects on acute promyelocytic leukemia.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 834
Author(s):  
Shuyan Wu ◽  
Xiaohui Chen ◽  
Fengyi Huang ◽  
Mingxue Lin ◽  
Pinzhong Chen ◽  
...  

Bone cancer pain (BCP)–depression comorbidity has become a complex clinical problem during cancer treatment; however, its underlying molecular mechanisms have not been clarified. Several long noncoding RNAs (lncRNAs) have been demonstrated to be promising therapeutic targets in depression, but research on the role of lncRNAs in BCP–depression comorbidity has been limited. Therefore, high-throughput RNA sequencing was performed to detect differentially expressed profiles in the amygdala of a BCP–depression rat model in this study. We detected 330 differentially expressed mRNAs (DEmRNAs) and 78 differentially expressed lncRNAs (DElncRNAs) in the BCP–depression comorbidity model and then verified the expression of six DEmRNAs and six DElncRNAs with the greatest degrees of difference by RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that differentially expressed genes were strongly enriched in inflammatory and immunologic systemic responses. Then the nuclear factor kappa B (NF-κB) signaling pathway and the Th17 differentiation pathway showed significant differences, as determined by Western blot analysis. Finally, we constructed a protein–protein interaction (PPI) network to explore the potential regulatory mechanism of DEmRNAs. In conclusion, our study reveals a new resource for the understanding of dysregulated lncRNAs and mRNAs in BCP–depression comorbidity and provides novel potential therapeutic targets for further approaches.


2020 ◽  
Vol 33 (6) ◽  
pp. 581-581
Author(s):  
Yan-zhen Li ◽  
Hao-jie Xu ◽  
Jia-min Hu ◽  
Shi-zhu Lin ◽  
Na Zhang ◽  
...  

Abstract Background To analyze expression profiles of long noncoding RNA (lncRNA) and messenger RNA (mRNA) in patients with essential hypertension (EH) and normotensive adults. Methods The gene chip dataset GSE76845, which was generated from 5 plasma samples from patients with EH and 5 normotensives, was downloaded from the National Biotechnology Information Center Public Data Platform. Each sample (total RNA) was pooled from the total RNA of 3 age- and gender-matched subjects (EH patients or healthy controls). A ClusterProfiler package including gene set enrichment analysis (GSEA) was used to identify differentially expressed genes. The target microRNA and mRNA were predicted by microcode, microDB, microTarBase, and TargetScan databases. Finally, a competing endogenous RNAs (ceRNA) regulatory network was constructed. Results Compared with the healthy control adults, 191 differential lncRNAs (90 upregulated and 101 downregulated) and 1,187 differential mRNAs (533 upregulated and 654 downregulated) were identified in EH patients. GSEA analysis showed that 17 pathways, including ubiquinone and terpenoid-quinone biosynthesis, parathyroid hormone synthesis secretion and action, fatty acid metabolism, and steroid hormone biosynthesis are involved in hypertension. A ceRNA network consisting of 150 nodes and 488 interactive pairs was constructed. Conclusions lncRNA and mRNA profile analysis provides new insight into molecular mechanisms of EH pathogenesis and potential targets for therapeutic interventions.


2018 ◽  
Vol 51 (5) ◽  
pp. 2198-2211 ◽  
Author(s):  
Xun Li ◽  
Zhanwen Lin ◽  
Lei Wang ◽  
Qin Liu ◽  
Zhi Cao ◽  
...  

Background/Aims: Our previous study demonstrated that a deficiency of microRNA 21 (miR-21) protects mice from acute pancreatitis, yet the underlying molecular networks associated with miR-21 in pancreatitis and pancreatitis-associated lung injury remain unexplored. Methods: We used next generation sequencing to analyze gene expression profiles of pancreatic tissues from wild-type (WT) and miR-21 knockout (KO) mice treated with caerulein by using a 1-day treatment protocol. The Database for Annotation, Visualization, and Integrated Discovery gene annotation tool and Ingenuity Pathway Analysis were used to analyze the molecular pathways, while quantitative real-time PCR, western blotting, and immunohistochemistry were used to explore the molecular mechanisms. Results: We identified 152 differentially expressed genes (DEGs) in pancreata between WT and KO mice treated with caerulein. Cellular biogenesis and metabolism were the major pathways affected between WT and KO mice, whereas cell death and inflammatory response discriminated between WT and KO mice under acute pancreatitis. We validated 16 DEGs, consisting of 6 upregulated genes and 10 downregulated genes, involved in pancreatic injury. In particular, the upregulation of Pias3 and downregulation of Hmgb1 in KO pancreata coincided with a reduced severity of pancreatitis. In addition, we found Hmgb1 stimulation resulted in the overexpression of miR-21 in peripheral blood mononuclear cells, and deletion of miR-21 led to a reduction of caerulein-induced acute pancreatitis-associated lung injury by repressing Hmgb1 expression. Conclusion: Our data support the hypothesis that miR-21 modulates the inflammatory response during acute pancreatitis through the upregulation of Pias3 and downregulation of Hmgb1. Our findings further underscore a role for miR-21 in the promotion of acute pancreatitis.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Rui Dong ◽  
Juan Du ◽  
Liping Wang ◽  
Jinsong Wang ◽  
Gang Ding ◽  
...  

Mesenchymal stem cells (MSCs) in different anatomic locations possess diverse biological activities. Maintaining the pluripotent state and differentiation depend on the expression and regulation of thousands of genes, but it remains unclear which molecular mechanisms underlie MSC diversity. Thus, potential MSC applications are restricted. Long noncoding RNAs (lncRNAs) are implicated in the complex molecular circuitry of cellular processes. We investigated differences in lncRNA and mRNA expression profiles between bone marrow stem cells (BMSCs) and periodontal ligament stem cells (PDLSCs) with lncRNA microarray assays and bioinformatics analysis. In PDLSCs, numerous lncRNAs were significantly upregulated (n=457) or downregulated (n=513) compared to BMSCs. Furthermore, 1,578 mRNAs were differentially expressed. These genes implicated cellular pathways that may be associated with MSC characteristics, including apoptosis, MAPK, cell cycle, and Wnt signaling pathway. Signal-net analysis indicated that phospholipase C beta 4, filamin B beta, calcium/calmodulin-dependent protein kinase II gamma, and the ionotropic glutamate receptor, AMPA 1, had the highest betweenness centrality among significant genes in the differential gene profile network. A comparison between the coding-noncoding gene coexpression networks of PDLSCs and BMSCs identified chemokine (C-X-C motif) ligand 12 as a core regulatory factor in MSC biology. These results provided insight into the mechanisms underlying MSC biology.


Epigenomics ◽  
2021 ◽  
Author(s):  
Meng An ◽  
Xiaowen Zang ◽  
Jimin Wang ◽  
Jie Kang ◽  
Xiaoyu Tan ◽  
...  

Aim: To delineate the transcriptomic landscape and potential molecular mechanisms of breast cancer brain metastasis (BCBM). Materials & methods: Whole-transcriptome sequencing was performed to identify long noncoding RNA (lncRNA), miRNA and mRNA expression profiles associated with BCBM. Results: A total of 739 differentially expressed lncRNAs, 115 differentially expressed miRNAs and 5749 differentially expressed mRNAs were identified in 231-BR cells compared with MDA-MB-231 cells. Real-time quantitative PCR results revealed the expression levels of candidate molecules were consistent with their correspondence RNA-seq data. Protein–protein interaction analysis identified some hub genes associated with BCBM, such as PTBP1, NUP98 and HYOU1. LncRNA-miRNA-mRNA network highlighted a potential mechanism of BCBM in which lncRNA FIRRE and RP11-169F17.1 sponging hsa-miR-501-5p to regulate the expression of MMS19, PTBP1 and NUP98. Conclusion: This study provides a framework for better understanding molecular mechanisms of BCBM.


Sign in / Sign up

Export Citation Format

Share Document