scholarly journals Studies on Mechanical Properties of Kevlar/Napier Grass Fibers Reinforced with Polymer Matrix Hybrid Composite

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
R. Ganesamoorthy ◽  
R. Meenakshi Reddy ◽  
T. Raja ◽  
Pradeep Kumar Panda ◽  
Sneha H. Dhoria ◽  
...  

A percentage of natural fibers is used for developing a composite, the materials are quite increasing in recent trends, and they can be a potential replacement of synthetic fibers in the reinforcement phase of hybrid composite. In this research, the combination of natural fibers and synthetic fibers can be used as reinforcement, and epoxy polymer can be used as matrix material. The fibers of Kevlar and Napier grass are reinforced with epoxy matrix to develop a new composite by using conventional hand layup fabrication process and to quantify the effect of this hybrid composite laminate, with five different sequences following. To identify the mechanical properties of this hybrid composite through tensile, flexural, compression strength, impact strength, and hardness tests, among all five samples, sample A was given the maximum mechanical strength, such that the tensile strength is 210 MPa, flexural strength is 165 MPa, the impact energy absorption is 23 J, the average is 40% over the other samples, and, at the same time, the compression strength of sample E is 19 MPa, revealing the negative influence of hybrid composite. The SEM morphology was carried out to identify the failure mode of the hybrid composites.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
T. Raja ◽  
S. Ravi ◽  
Alagar Karthick ◽  
Asif Afzal ◽  
B. Saleh ◽  
...  

The usage of natural fibers has increased recently. They are used to replace synthetic fiber products in aircraft and automobile industries. In this study, natural fibers of bidirectional banyan mat and ramie fabrics are used for reinforcement, and the matrix is an epoxy resin to fabricate composite laminates by traditional hand layup technique at atmospheric temperature mode. Five different sequences of reinforcements are as follows to quantify the effect of thermal stability and mechanical behavior of silane-treated and untreated hybrid composites. The results revealed that silane-treated fabric composite laminates were given enhanced mechanical properties of 7% tensile, 11% flexural, and 9% impact strength compared with untreated fabric composite, and at the same time when the increasing of ramie fabric was given the positive influence of 41% improved tensile strength of 40.7 MPa, 49% improved in flexural strength of 38.9 MPa and negative influence in 57% lower impact strength in sample E and positive value in sample A 21.12 J impact energy absorbed in the hybrid composite. Thermogravimetric analysis (TGA) revealed the thermal stability of the hybrid composite. In sample A, the thermal stability is more than in other samples, and 410°C is required to reduce the mass loss of 25%. The working mass condition of the hybrid composite is up to 3.25 g after it moves to degrade.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


: In general the natural fibers are taken out from the sources of animals and plants. In recent days the natural fibers play an important role in engineering applications like automotive, aerospace and marine industries due to abundant availability, less in cost and zero percentage environment harmless in nature. In this paper the investigation of various mechanical properties of hybrid reinforced composite (Palm fiber Basalt S-glass fiber) is been done on the fabricated samples. The different mechanical property includes tensile, hardness and impact tests etc... The fabrication comprises three layers of Palm and Basalt fibers outer laminated by two layers of S-glass fibers using injection molding method. From the various testing and investigation against the test sample it is been concluded that the fibers in the hybrid set took a major role in determining the important mechanical properties. Thus the fibers present in the hybrid composite increases the strength, stiffness and weight ratio of the composite materials. The various forms and structural analysis of the hybrid composite material are processed by using scanning electron microscope for attaining the better results and application basis


2014 ◽  
Vol 660 ◽  
pp. 572-577
Author(s):  
Syarifah Yunus ◽  
Z. Salleh ◽  
M.A. Aznan ◽  
M.N. Berhan ◽  
A. Kalam ◽  
...  

This paper discusses the mechanical properties of woven kenaf/fiberglass hybrid composites which has been fabricating using vacuum bag technique. Kenaf fiber had chosen among others natural fibres due to its excellent mechanical properties and potential natural raw fiber to replace plastic or tobacco in manufacturing a multitude of products for the construction, automotive, textile and advanced technology sectors. This study investigates post impact tensile of kenaf hybrid composites and its surface fractured. The impact energy used consists of 4J, 6J, 8J, 12J and 16J. The specimens were clamped between two plate rings with an internal hole diameter of 18mm and impacted with hemispherical nose impactor shape with diameter size of 12.7mm. The results revealed that this kenaf hybrid composite showed significant decreasing of strength and modulus as increasing the impact energy. The damage area affected with fiber fracture occurred much later in fracture process due to high bending stresses.


2021 ◽  
Vol 12 (2) ◽  
pp. 1480-1489

Lightweight aluminum metal matrix nanocomposites play an important role in aerospace, military, automotive, electricity, and structural applications due to their improved mechanical, physical, and tribological properties. The hybrid nanocomposites were made using a motorized stir casting technique to achieve the desired mechanical properties. The composites were made using a mixture of graphene amine and carbon fibers in various weight proportions. The hybrid nanocomposites were created by varying the weight percentage (wt.%) of reinforcements in the AA7076 base matrix, such as 0.5wt % carbon fiber (micro filler) and 0.5wt % graphene (nanofiller). X-Ray Diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the homogeneous distribution of the fabricated hybrid composite. The mechanical properties of the hybrid composites were assessed using hardness and tensile measures. The composite with 1wt. percent reinforcements had a 50 percent increase in hardness and a 42 percent increase in tensile strength as compared to the base AA7076 matrix content. The wear tests were conducted using a pin-on-disc tribo tester, and the results showed that the hybrid composite (1wt.%) outperformed the AA7076 matrix material in terms of wear resistance.


2019 ◽  
Vol 895 ◽  
pp. 176-180
Author(s):  
C.K. Yogish ◽  
S. Pradeep ◽  
B. Kuldeep ◽  
K.P. Ravikumar ◽  
Rao R. Raghavendra

Over the last decades composite materials, plastics and ceramics have been the dominant emerging materials. The volume and number of applications of composite materials have grown steadily, penetrating and conquering new markets relentlessly. So everybody is concentrating on new materials which will be strong enough, less weight, recyclable with reduced cost. Hence all the researchers are concentrated on the composite materials which have all the above properties. The present work is concentrated on coconut coir fiber and Rice husk reinforced polyester hybrid composites. The composites specimen was fabricated with various weight percentages of natural fibers namely coconut coir (20%, 15%, 10%, and 5%) and Rice husk (15%, 10%, and 5%) combined with CamElect 3321 resin using hand lay-up method. So to obtain new composite materials different proportions of coconut coir and Rice husk is added and the mechanical properties such as Tensile strength, Flexural Strength and Impact test were carried out for the samples cut from the fabricated composites specimen to the dimensions as per ASTM standard. With the increasing percentage of the reinforcements the performance of the material is improving. The tensile strength increases with the increase in coir reinforcement percentage and flexural strength increases with the increasing in percentage of the rice husk and the impact strength of the material gets boost with equal proportional percentage of coconut coir and rice husk reinforcement.


2015 ◽  
Vol 24 (4) ◽  
pp. 096369351502400 ◽  
Author(s):  
Yakubu Dan-mallam ◽  
Mohamad Zaki Abdullah ◽  
Puteri Sri Melor Megat Yusoff

The challenges of improving the mechanical properties of natural fibre composites cannot be over emphasized due to fibre geometry, poor fiber distribution in the matrix, the hydrophilic nature of natural fibers and poor fibre–matrix interfacial adhesion. The primary objective of this research is to study the influence of fibre length on mechanical properties of kenaf/PET fibre reinforced POM and to study the effect of hybridization on mechanical properties of the composites. The composites were produced by compression molding and subsequently subjected to tensile, flexural and impact tests according to their respective ASTM standards. The tensile strength of short POM/kenaf/PET (80/10/10) hybrid composite dropped by approximately 33% from 61.8 MPa to 41.3 MPa compared to neat POM. However, the tensile strength of continuous POM/kenaf composites increased significantly by approximately 127% and 107% for 70/30 and 80/20 compositions compared to neat POM. The flexural moduli of short POM/kenaf/PET (70/15/15) hybrid composite and continuous POM/kenaf (70/30) composite improved by approximately 41% and 29%, respectively. The impact strength substantially increased by nearly 161% in continuous POM/kenaf/PET (70/15/15) hybrid composite and 30% in POM/kenaf (80/20) composite. The results show that tensile, flexural and impact properties of the continuous POM/kenaf composites are superior to the short fiber composites, and the influence of hybridization, made a positive impact by enhancing the flexural and impact properties of the composites.


2020 ◽  
Vol 9 (1) ◽  
pp. 2744-2751

Natural fiber reinforced composites are gaining popularity over conventional materials due its low cost, easy accessibility, non toxicity and most important feature - the biodegradability. Since broad varieties of natural fibers are available on earth, hence their merits can be incorporated in one by means of hybridization. Matured sponge gourd, which turns into a net structured fibrous mass on sun drying, is amalgamated with coconut coir as reinforcement along with epoxy resin as matrix material in a composite. The present study was carried out to explore the impact of change in weight percentages of sponge gourd fiber and coir on the mechanical properties and moisture affinity. The alkali treated fibers were turned into composites by dint of Hand Layup technique. The various mechanical properties were evaluated according to ASTM protocol. After the successful conclusion of the experiments, it was found that composite with maximum weight percentage of coir showed superlative tensile and impact strength whereas the composite with highest sponge fibre content showed maximum flexural strength. The composite with equal sponge fiber-coir weight percentage displayed lowest affinity towards moisture.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2088 ◽  
Author(s):  
Ayyappa Atmakuri ◽  
Arvydas Palevicius ◽  
Andrius Vilkauskas ◽  
Giedrius Janusas

The present review article provides an overview of the properties of various natural and synthetic fibers for the fabrication of pure natural composites and the combination of both natural/synthetic fibers-based hybrid composites, bio-based resins, various fabrication techniques, chemical and mechanical properties of fibers, the effect of chemical treatment and the influence of nanoparticles on the composite materials. Natural fibers are becoming more popular and attractive to researchers, with satisfactory results, due to their availability, ease of fabrication, cost-effectiveness, biodegradable nature and being environmentally friendly. Hybrid composites made up of two different natural fibers under the same matrix material are more popular than a combination of natural and synthetic fibers. Recent studies relevant to natural fiber hybrid composites have stated that, due to their biodegradability and the strength of individual fibers causing an impact on mechanical properties, flame retardancy and moisture absorption, natural fibers need an additional treatment like chemical treatment for the fibers to overcome those drawbacks and to enhance their better properties. The result of chemical treatment on composite material properties such as thermal, mechanical and moisture properties was studied. Researchers found that the positive influence on overall strength by placing the filler materials (nanoparticles) in the composite materials. Hybrid composites are one of the fields in polymer science that are attracting consideration for various lightweight applications in a wide range of industries such as automobile, construction, shipping, aviation, sports equipment, electronics, hardware and biomedical sectors.


2020 ◽  
Vol 8 (6) ◽  
pp. 4570-4575

Cenosphere is a powder form material obtained by burning of coal in thermal plants. This industrial waste is ceramic rich, economically available and as filler material has the potential to improve properties of Composites. This work deals with the effect of cenosphere as filler material on mechanical properties of the Hemp/Glass Reinforced Epoxy Hybrid Composites. Industrial hemp fiber/fabric, which is produced by the bast of the hemp tree, is used along with Glass fibers in this hybrid composite with cenosphere as a filler material and epoxy as the matrix material. Hand layup technique is used to develop composite specimens with various weight fractions. Composite specimen prepared as per relevant ASTM standards were tested for their mechanical properties to establish the influence of cenosphere and glass fabrics in the laminates with Hemp fabrics. It has found that some of the properties of hybrid composite samples are significantly increased by the influence of filler material. This hybrid composite can be used as alternative material to plastics used in automobile mudguard.


Sign in / Sign up

Export Citation Format

Share Document