scholarly journals One-Pot Synthesis of Magnetic Polypyrrole Nanotubes for Adsorption of Cr(VI) in Aqueous Solution

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenjuan Zhang ◽  
Yaxian Wang ◽  
Yulong Fei ◽  
Youliang Wang ◽  
Zhaoxiong Zhang ◽  
...  

A novel and efficient route is proposed to fabricate Fe3O4/polypyrrole (Fe3O4/PPy) nanotubes via a one-pot process. The one-pot strategy involves the synthesis of Fe3O4/PPy nanotubes by oxidative polymerization of pyrrole (Py) monomer using Fe3+ as an oxidant in the presence of methyl orange (MO) and Fe3+ used as iron source to form Fe3O4 simultaneously in basic conditions without adding any additional iron source and oxidant. The effects of Fe3+ concentration on the morphology and adsorption capacity of the Fe3O4/PPy nanotubes were investigated. The Fe3O4/PPy nanotubes exhibit a tubular structure. Fe3O4 nanoparticles are well dispersed among the PPy nanotubes. The Fe3O4/PPy nanotubes exhibit excellent magnetic property, which make them easy to separate from wastewater by magnetic separation. The diameter of the PPy nanotubes decreased with the increase of the Fe3+ concentration. The Fe3O4/PPy nanotubes showed strong adsorption capability for Cr(VI) with the maximum adsorption capacity of about 451.45 mg·g−1, which is significantly higher than bare Fe3O4 nanoparticles. Cr(VI) was adsorbed on Fe3O4/PPy nanotubes by ion exchange and chelation, where Cr(VI) was partially reduced to Cr(III) due to the existence of −NH+ on the Fe3O4/PPy nanotubes. Furthermore, the Fe3O4/PPy nanotubes are recyclable, retaining 90% of the initial removal efficiency after 5 adsorption/desorption cycles.

2021 ◽  
Author(s):  
Qiuxing Li ◽  
Li Huang ◽  
Paijin Zhu ◽  
Min Zhong ◽  
Shuxia Xu

Abstract Contamination of water resources with organic substances like phenolic fungicides is undesirable due to the improvement of living standards, huge production and consumption of daily chemicals, and an increase in the population. In this study, ZIF-67(Co) was synthesized using the “one pot method”, and the Co-magnetic porous carbon (Co-NPC) was prepared by ZIF-67 (Co) carbonization in an atmosphere of N2. The materials were tested using a X-ray diffractometer (XRD), scanning electron microscope (SEM), infrared spectroscopy (IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption and magnetization analysis. These methods indicated that the Co-NPC was successfully prepared. With the original morphology of ZIF-67 (Co) crystal, the Co-NPC also has good porosity, magnetic properties and a large specific surface area. In water, Co-NPC-800 has a good adsorption capacity for triclosan (TCS) and p-chloro-m-xylenol (PCMX), which are kinds of aromatic fungicides. The adsorption of Co-NPC-800 on both reached equilibrium within 3 min, which is in accordance with the quasi-second-order kinetic model. At 298 K, the maximum adsorption capacity of Co-NPC-800 for TCS and PCMX was 163 and 39 mg·g-1, respectively. The adsorption of TCS and PCMX by Co-NPC-800 is a spontaneous endothermic process with reduced entropy. The combination of Co-NPC-800 and phenols come from multiple action of electrostatic, π-π and hydrogen bond effects. Moreover, Co-NPC-800 can be regenerated through simple washing and can be reused several times. Therefore, Co-NPC-800 has great potential to be applied across sewage treatments and other environmental fields.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lirong Zhang ◽  
Jingjing Zhang ◽  
Lixia Xu ◽  
Zijian Zhuang ◽  
Jingjin Liu ◽  
...  

Abstract Background Therapeutic tumor vaccine (TTV) that induces tumor-specific immunity has enormous potentials in tumor treatment, but high heterogeneity and poor immunogenicity of tumor seriously impair its clinical efficacy. Herein, a novel NIR responsive tumor vaccine in situ (HA-PDA@IQ/DOX HG) was prepared by integrating hyaluronic acid functionalized polydopamine nanoparticles (HA-PDA NPs) with immune adjuvants (Imiquimod, IQ) and doxorubicin (DOX) into thermal-sensitive hydrogel. Results HA-PDA@IQ NPs with high photothermal conversion efficiency (41.2%) and T1-relaxation efficiency were using HA as stabilizer by the one-pot oxidative polymerization. Then, HA-PDA@IQ loaded DOX via π-π stacking and mixed with thermal-sensitive hydrogel to form the HA-PDA@IQ/DOX HG. The hydrogel-confined delivery mode endowed HA-PDA@IQ/DOX NPs with multiple photothermal ablation performance once injection upon NIR irradiation due to the prolonged retention in tumor site. More importantly, this mode enabled HA-PDA@IQ/DOX NPs to promote the DC maturation, memory T cells in lymphatic node as well as cytotoxic T lymphocytes in spleen. Conclusion Taken together, the HA-PDA@IQ/DOX HG could be served as a theranostic tumor vaccine for complete photothermal ablation to trigger robust antitumor immune responses.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2295
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Hagar Morsy

Biochars (BC) of spent coffee grounds, both pristine (SCBC) and impregnated with titanium oxide (TiO2@SCBC) were exploited as environmentally friendly and economical sorbents for the fluroquinolone antibiotic balofloxacin (BALX). Surface morphology, functional moieties, and thermal stabilities of both adsorbents were scrutinized using SEM, EDS, TEM, BET, FTIR, Raman, and TG/dT analyses. BET analysis indicated that the impregnation with TiO2 has increased the surface area (50.54 m2/g) and decreased the pore size and volume. Batch adsorption experiments were completed in lights of the experimental set-up of Plackett-Burman design (PBD). Two responses were maximized; the % removal (%R) and the adsorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dosage (AD), BALX concentration ([BALX]), and contact time (CT). %R of 68.34% and 91.78% were accomplished using the pristine and TiO2@SCBC, respectively. Equilibrium isotherms indicated that Freundlich model was of a perfect fit for adsorption of BALX onto both adsorbents. Maximum adsorption capacity (qmax) of 142.55 mg/g for SCBC and 196.73 mg/g for the TiO2@SCBC. Kinetics of the adsorption process were best demonstrated using the pseudo-second order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 66.32% after the fifth cycles.


2017 ◽  
Vol 42 (3) ◽  
pp. 269-281
Author(s):  
Lvling Zhong ◽  
Liang Zhang ◽  
Hongliang Shi

A series of nitrogen-doped mesoporous carbons (NDMCs) was prepared using p-phenylenediamine and glyoxal as a carbon source and mesoporous silica as a hard template. N2 adsorption–desorption isotherms indicated that mesopores with a wider distribution exist in NDMCs. Elemental analysis showed that the N content on the surface of NDMC-800 was 9.9at.%, with a result close to 8.4at.% from X-ray photoelectron spectroscopy. The adsorption capacity of NDMCs for crystal violet (CV) in aqueous solution was investigated. Static equilibrium data were well described by the Langmuir isotherm model, with a maximum adsorption capacity of 243.9 mg g−1. Adsorption kinetics data suggested that the adsorption control process follows the pseudo first-order kinetics model. The results showed that this carbon material has the potential for application in adsorption of CV.


2021 ◽  
Author(s):  
You Wu ◽  
Zuannian Liu ◽  
Bakhtari Mohammad Fahim ◽  
Junnan Luo

Abstract In this study, MIL-101(Fe), MIL-101(Fe,Cu), and Graphene Oxide (GO) /MIL-101(Fe,Cu) were synthesized to compose a novel sorbent. The adsorption properties of these three MOFs-based composites were compared toward the removal of phosphate. Furthermore, the influencing factors including reaction time, pH, temperature and initial concentration on the adsorption capacity of phosphate on these materials as well as the reusability of the material were discussed. The structure of fabricated materials and the removal mechanism of phosphate on the composite material were analyzed by Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis and zeta potential. The results show that the maximum adsorption capacity of phosphate by the composite GO/MIL-101(Fe,Cu)-2% was 204.60 mg·g− 1, which is higher than that of MIL-101(Fe,Cu) and MIL-101(Fe). likewise the specific surface area of GO/MIL-101(Fe,Cu)-2% is 778.11 m2/g is higher than that of MIL-101(Fe,Cu) and MIL-101(Fe),which are 747.75 and 510.66m2/g respectively. The adsorption mechanism of phosphate is electrostatic attraction, form coordination bonds and hydrogen bonds. The fabricated material is a promising adsorbent for the removal of phosphate with good reusability.


2021 ◽  
Vol 11 (5) ◽  
pp. 13130-13140

Our study aims to evaluate the efficiency of dissolved iron (III) retention in synthetic solutions by adsorption on treated natural phosphate collected in the Khouribga region. This research focused on the valorization of phosphate, a naturally occurring resource that is abundant in Morocco. The resulting products were analyzed by various methods, including FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). In this work, we studied the effect of several parameters such as adsorbent amount, contact time, solution pH, and initial concentration of iron (III) on the adsorption process. The results of the adsorption of iron (III) indicate that the efficiency was achieved after 5 minutes, and the maximum adsorption capacity calculated from the Langmuir model was 26.18 mg g-1. The regeneration and reuse of synthesized adsorbent are effective for five cycles of adsorption-desorption cycles without reducing adsorption capacity.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 160
Author(s):  
Rongrong Si ◽  
Yehong Chen ◽  
Daiqi Wang ◽  
Dongmei Yu ◽  
Qijun Ding ◽  
...  

In the present study, carboxymethyl cellulose nanofibrils (CMCNFs) with different carboxyl content (0.99–2.01 mmol/g) were prepared via controlling the ratio of monochloroacetic acid (MCA) and sodium hydroxide to Eucalyptus bleached pulp (EBP). CMCFs-PEI aerogels were obtained using the crosslinking reaction of polyethyleneimine (PEI) and CMCNFs with the aid of glutaraldehyde (GA). The effects of pH, contact time, temperature, and initial Cu2+ concentration on the Cu2+ removal performance of CMCNFs-PEI aerogels was highlighted. Experimental data showed that the maximum adsorption capacity of CMCNF30-PEI for Cu2+ was 380.03 ± 23 mg/g, and the adsorption results were consistent with Langmuir isotherm (R2 > 0.99). The theoretical maximum adsorption capacity was 616.48 mg/g. After being treated with 0.05 M EDTA solution, the aerogel retained an 85% removal performance after three adsorption–desorption cycles. X-ray photoelectron spectroscopy (XPS) results demonstrated that complexation was the main Cu2+ adsorption mechanism. The excellent Cu2+ adsorption capacity of CMCNFs-PEI aerogels provided another avenue for the utilization of cellulose nanofibrils in the wastewater treatment field.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 178
Author(s):  
Serap Sezen ◽  
Vijay Kumar Thakur ◽  
Mehmet Murat Ozmen

Currently, macroporous hydrogels have been receiving attention in wastewater treatment due to their unique structures. As a natural polymer, alginate is used to remove cationic dyes due to its sustainable features such as abundance, low cost, processability, and being environmentally friendly. Herein, alginate/montmorillonite composite macroporous hydrogels (cryogels) with high porosity, mechanical elasticity, and high adsorption yield for methylene blue (MB) were generated by the one-step cryogelation technique. These cryogels were synthesized by adding montmorillonite into gel precursor, followed by chemical cross-linking employing carbodiimide chemistry in a frozen state. The as-prepared adsorbents were analyzed by FT-IR, SEM, gel fraction, swelling, uniaxial compression, and MB adsorption tests. The results indicated that alginate/montmorillonite cryogels exhibited high gelation yield (up to 80%), colossal water uptake capacity, elasticity, and effective dye adsorption capacity (93.7%). Maximum adsorption capacity against MB was 559.94 mg g−1 by linear regression of Langmuir model onto experimental data. The Pseudo-Second-Order model was fitted better onto kinetic data compared to the Pseudo-First-Order model. Improved porosity and mechanical elasticity yielding enhanced dye removal capacity make them highly potential alternative adsorbents compared to available alginate/montmorillonite materials for MB removal.


Sign in / Sign up

Export Citation Format

Share Document