scholarly journals Tanshinone I Mitigates Steroid-Induced Osteonecrosis of the Femoral Head and Activates the Nrf2 Signaling Pathway in Rats

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xilin Xu ◽  
Yiwei Shen ◽  
Hang Lv ◽  
Jun Zhao ◽  
Xiaodong Li ◽  
...  

Steroid-induced osteonecrosis of the femoral head (SIONFH) is a frequent orthopedic disease caused by long-term or high-dose administration of corticosteroids. Tanshinone I (TsI), a flavonoid compound isolated from Salvia miltiorrhiza Bunge, has been reported to inhibit osteoclastic differentiation in vitro. This study aimed to investigate whether TsI can ameliorate SIONFH. Herein, SIONFH was induced by intraperitoneal injection of 20 μg/kg lipopolysaccharide every 24 h for 2 days, followed by an intramuscular injection of 40 mg/kg methylprednisolone every 24 h for 3 days. Four weeks after the final injection of methylprednisolone, the rats were intraperitoneally administrated with low-dose (5 mg/kg) and high-dose (10 mg/kg) TsI once daily for 4 weeks. Results showed that TsI significantly alleviated osteonecrotic lesions of the femoral heads as determined by micro-CT analysis. Furthermore, TsI increased alkaline phosphatase activity and expressions of osteoblastic markers including osteocalcin, type I collagen, osteopontin, and Runt-related transcription factor 2 and decreased tartrate-resistant acid phosphatase activity and expressions of osteoclastic markers including cathepsin K and acid phosphatase 5. TsI also reduced inflammatory response and oxidative stress and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in the femoral heads. Taken together, our findings show that TsI can relieve SIONFH, indicating that it may be a candidate for preventing SIONFH.

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 866 ◽  
Author(s):  
Yunok Oh ◽  
Chang-Bum Ahn ◽  
Won Ho Cho ◽  
Na Young Yoon ◽  
Jae-Young Je

Numerous amounts of evidence suggest that bioactive peptides with diverse physiological activities can be nutraceuticals or potential drug candidates. In this study, blue mussel-derived antioxidant peptides PIISVYWK and FSVVPSPK were subjected to evaluate their osteogenic effect in mouse bone marrow mesenchymal stem cells (mBMMSCs) followed by an in vivo anti-osteoporotic effect. Treatment of PIISVYWK and FSVVPSPK on mBMMSCs stimulated alkaline phosphatase activity and calcification. Western blot results revealed that PIISVYWK and FSVVPSPK increased the expression of bone morphogenetic protein-2/4 (BMP-2/4) followed by upregulating p-Smad1/5, type I collagen, and transcription factors including Runx2 and osterix in mBMMSCs. Two peptides also activated the phosphorylation of MAPKs (p-p38, p-ERK, and p-JNK). Treatment of MAPK inhibitors significantly inhibited the BMP signaling pathway, indicating that PIISVYWK and FSVVPSPK stimulated osteoblast differentiation of mBMMSCs through the MAPK-dependent BMP signaling pathway. The anti-osteoporotic effect of PIISVYWK and FSVVPSPK in ovariectomized (OVX) mice was investigated. Treatment of PIISVYWK and FSVVPSPK for ten weeks showed a notable anti-osteoporotic effect in OVX mice via increasing bone mineral density and other bone parameters compared to OVX mice without peptides. Serum analysis also showed that treatment of PIISVYWK and FSVVPSPK completely reduced osteocalcin and ALP (alkAline phosphatase) activity. Taken together, these results suggest that PIISVYWK and FSVVPSPK could be health-promoting functional food ingredients against osteoporosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xuan Guo ◽  
Yin Xu ◽  
Hua-liang Tan ◽  
Xiao-juan Wang ◽  
Lin Xiao

Background. Gastrointestinal motility disorder is a common gastrointestinal disease, which seriously affects life quality. Traditional Chinese medicine (TCM) has been widely used as an alternative therapy for gastrointestinal motility disorder. Acacetin is a natural flavonoid compound that has antioxidant and anti-inflammatory, antidepressant, and anticancer properties. However, the efficacy of Acacetin in the treatment of gastrointestinal motility disorders has not been studied. Our aim was to investigate the mechanism of Acacetin-alleviated gastrointestinal motility disorder and its efficacy based on network pharmacology. Methods. We performed network pharmacology to predict the active components, match Weishu decoction (WSD) targets in gastrointestinal motility disorders, and investigate its potential pharmacological mechanisms. We performed the GO and KEGG enrichment analysis. In vivo, we investigated the effects of Acacetin in the gastrointestinal motility disorder model. Results. Based on network pharmacological method, the key active ingredient of WSD was identified as Acacetin, and the enrichment signaling pathway was the PI3K-AKT signaling pathway. Acacetin and Mosapride accelerated gastric emptying time, reduced gastric remnant rate, and increased small intestinal propulsion rate. The levels of GAS and MTL were increased after using Acacetin. These results indicated that Acacetin could improve gastrointestinal motility disorders. Among them, high-dose Acacetin showed a better effect. Acacetin could regulate protein and lipid metabolism in mice with gastrointestinal motility disorder. Furthermore, Acacetin could modulate gastrointestinal inflammation and apoptosis. The detection of the PI3K-AKT signaling pathway-related proteins showed that Acacetin improved gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway. Conclusion. The key ingredient Acacetin in WSD could alleviate gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway based on network pharmacology analysis. The efficacy and safety of Acacetin treatment provide strong experimental support for the clinical treatment of gastrointestinal motility disorder.


Author(s):  
O. T. Minick ◽  
E. Orfei ◽  
F. Volini ◽  
G. Kent

Hemolytic anemias were produced in rats by administering phenylhydrazine or anti-erythrocytic (rooster) serum, the latter having agglutinin and hemolysin titers exceeding 1:1000.Following administration of phenylhydrazine, the erythrocytes undergo oxidative damage and are removed from the circulation by the cells of the reticulo-endothelial system, predominantly by the spleen. With increasing dosage or if animals are splenectomized, the Kupffer cells become an important site of sequestration and are greatly hypertrophied. Whole red cells are the most common type engulfed; they are broken down in digestive vacuoles, as shown by the presence of acid phosphatase activity (Fig. 1). Heinz body material and membranes persist longer than native hemoglobin. With larger doses of phenylhydrazine, erythrocytes undergo intravascular fragmentation, and the particles phagocytized are now mainly red cell fragments of varying sizes (Fig. 2).


1993 ◽  
Vol 06 (03) ◽  
pp. 160-162 ◽  
Author(s):  
M. J. Ulm ◽  
D. G. Wilson

SummaryFemoral capital physeal fractures have been successfully repaired using 7.0 mm cannulated screws. The holding power of 7.0 mm cannulated screws was compared to the holding power of 5.5 mm cortical screws and 6.5 mm cancellous screws using paired bovine femoral heads. The 7.0 mm cannulated screw’s holding power was superior to the 6.5 mm cancellous screw and similar to that of the 5.5 mm cortical screw.When placed in the bovine femoral head, 7.0 mm cannulated screws have holding power greater than 6.5 mm cancellous screws and similar to 5.5 mm cortical screws.


2020 ◽  
Vol 15 ◽  
Author(s):  
Mingxuan Yang ◽  
Liangtao Zhao ◽  
Xuchang Hu ◽  
Haijun Feng ◽  
Xuewen Kang

Background: Osteosarcoma (OS) is one of the most common primary malignant bone tumors in teenagers. Emerging studies demonstrated TWEAK and Fn14 were involved in regulating cancer cell differentiation, proliferation, apoptosis, migration and invasion. Objective: The present study identified differently expressed mRNAs and lncRNAs after anti-TWEAK treatment in OS cells using GSE41828. Methods: We identified 922 up-regulated mRNAs, 863 downregulated mRNAs, 29 up-regulated lncRNAs, and 58 down-regulated lncRNAs after anti-TWEAK treatment in OS cells. By constructing PPI networks, we identified several key proteins involved in anti-TWEAK treatment in OS cells, including MYC, IL6, CD44, ITGAM, STAT1, CCL5, FN1, PTEN, SPP1, TOP2A, and NCAM1. By constructing lncRNAs coexpression networks, we identified several key lncRNAs, including LINC00623, LINC00944, PSMB8-AS1, LOC101929787. Result: Bioinformatics analysis revealed DEGs after anti-TWEAK treatment in OS were involved in regulating type I interferon signaling pathway, immune response related pathways, telomere organization, chromatin silencing at rDNA, and DNA replication. Bioinformatics analysis revealed differently expressed lncRNAs after antiTWEAK treatment in OS were related to telomere organization, protein heterotetramerization, DNA replication, response to hypoxia, TNF signaling pathway, PI3K-Akt signaling pathway, Focal adhesion, Apoptosis, NF-kappa B signaling pathway, MAPK signaling pathway, FoxO signaling pathway. Conclusion: : This study provided useful information for understanding the mechanisms of TWEAK underlying OS progression and identifying novel therapeutic markers for OS.


2021 ◽  
Vol 22 (11) ◽  
pp. 5995
Author(s):  
Chand Basha Davuljigari ◽  
Frederick Adams Ekuban ◽  
Cai Zong ◽  
Alzahraa A. M. Fergany ◽  
Kota Morikawa ◽  
...  

Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document