scholarly journals TNF-α Induces Neutrophil Apoptosis Delay and Promotes Intestinal Ischemia-Reperfusion-Induced Lung Injury through Activating JNK/FoxO3a Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Daili Chen ◽  
Chaojin Chen ◽  
Xue Xiao ◽  
Ziyan Huang ◽  
Xiaolei Huang ◽  
...  

Background. Intestinal ischemia is a common clinical critical illness. Intestinal ischemia-reperfusion (IIR) leads to acute lung injury (ALI), but the causative factors of ALI are unknown. The aim of this study was to reveal the causative factors and mechanisms of IIR-induced lung injury. Methods. A mouse model of IIR was developed using C57BL/6 mice, followed by detection of lung injury status and plasma levels of inflammatory factors in sham-operated mice and model mice. Some model mice were treated with a tumor necrosis factor-α (TNF-α) inhibitor lenalidomide (10 mg/kg), followed by observation of lung injury status through hematoxylin and eosin staining and detection of neutrophil infiltration levels through naphthol esterase and Ly6G immunohistochemical staining. Additionally, peripheral blood polymorphonuclear neutrophils (PMNs) were cultured in vitro and then stimulated by TNF-α to mimic in vivo inflammatory stimuli; this TNF-α stimulation was also performed on PMNs after knockdown of FoxO3a or treatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125. PMN apoptosis after stimulation was detected using flow cytometry. Finally, the role of PMN apoptosis in IIR-induced lung injury was evaluated in vivo by detecting the ALI status in the model mice administered with ABT-199, a Bcl-2 inhibitor. Results. IIR led to pulmonary histopathological injury and increased lung water content, which were accompanied by increased plasma levels of inflammatory factors, with the TNF-α plasma level showing the most pronounced increase. Inhibition of TNF-α led to effective reduction of lung tissue injury, especially that of the damaging infiltration of PMNs in the lung. In vitro knockdown of FoxO3a or inhibition of JNK activity could inhibit TNF-α-induced PMN apoptosis. Further in vivo experiments revealed that ABT-199 effectively alleviated lung injury and decreased inflammation levels by promoting PMN apoptosis during IIR-induced lung injury. Conclusion. TNF-α activates the JNK/FoxO3a pathway to induce a delay in PMN apoptosis, which promotes IIR-induced lung injury.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Guo Zu ◽  
Jing Guo ◽  
Ningwei Che ◽  
Tingting Zhou ◽  
Xiangwen Zhang

Abstract Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients in Panax ginseng, and it attenuates inflammation and apoptosis. The aims of our study were to explore the potential of Rg1 for the treatment of intestinal I/R injury and to determine whether the protective effects of Rg1 were exerted through the Wnt/β-catenin signaling pathway. In this study, Rg1 treatment ameliorated inflammatory factors, ROS and apoptosis that were induced by intestinal I/R injury. Cell viability was increased and cell apoptosis was decreased with Rg1 pretreatment following hypoxia/reoxygenation (H/R) in the in vitro study. Rg1 activated the Wnt/β-catenin signaling pathway in both the in vivo and in vitro models, and in the in vitro study, the activation was blocked by DKK1. Our study provides evidence that pretreatment with Rg1 significantly reduces ROS and apoptosis induced by intestinal I/R injury via activation of the Wnt/β-catenin pathway. Taken together, our results suggest that Rg1 could exert its therapeutic effects on intestinal I/R injury through the Wnt/β-catenin signaling pathway and provide a novel treatment modality for intestinal I/R injury.



2014 ◽  
Vol 17 (2) ◽  
pp. 266 ◽  
Author(s):  
Yusuke Terada ◽  
Jiro Ogura ◽  
Takashi Tsujimoto ◽  
Kaori Kuwayama ◽  
Takahiro Koizumi ◽  
...  

Purpose. Reactive oxygen species (ROS) have multiple physiological effects that are amount-dependent. ROS are one of the causes of intestinal ischemia-reperfusion (I/R) injury. In this study, we investigated whether the amount of ROS and the degree of intestinal I/R injury affect the expression level of P-glycoprotein (P-gp). Methods. We used hydrogen peroxide (H2O2) as ROS in in vitro experiments. Intestinal I/R model rats, which were subjected 15-min ischemia (I/R-15), were used in in vivo experiments. Results. P-gp expression in Caco-2 cells was increased in response to 1 µM of H2O2 but decreased upon exposure to 10 mM of H2O2. We previously reported that P-gp expression is decreased after intestinal I/R with 30-min ischemia (I/R-30), which time a large amount of ROS is generated. I/R-15 induced slightly less mucosal and oxidative injury than did I/R-30. P-gp expression in the jejunum was increased at 1 h after I/R-15, and ileal paracellular permeability was increased. The blood concentration of tacrolimus, a P-gp substrate, was lower during 0-20 min but was higher during 40-90 min post-administration compared with that in the sham-operated rats. P-gp expression in the ileum was decreased at 6 h after I/R-15, due to abnormal localization of P-gp, resulting in a high blood tacrolimus concentration in rats reperfused for 6 h. Conclusions. ROS multimodally regulate P-gp expression depending on its amount. This is important for understanding the pattern of P-gp expression after intestinal I/R. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.



2021 ◽  
pp. 096032712110434
Author(s):  
Ling Jia ◽  
Wenjing Cui ◽  
Jiao Chen ◽  
Jinghui Yang ◽  
Xiang Xue ◽  
...  

Erythropoietin (EPO) has antiapoptotic, antioxidative, and anti-inflammatory effects on ischemia tissues and protects against acute lung injury (ALI) induced by ischemia-reperfusion (I/R). p38 mitogen-activated protein kinases (p38 MAPK) signaling is involved in the processes of I/R-induced ALI. However, the interaction of EPO with p38 MAPK signaling in I/R-induced ALI has not been reported. To explore this issue, we constructed an I/R-induced ALI model in vivo and in vitro using Sprague Dawley rats and BEAS-2B cells. Some I/R rats and hypoxia-reoxygenation (H/R)–induced cells were treated with EPO, and the others were used as control groups. The injuries of lung tissues and cells were respectively assessed by inflammatory cytokine, morphologic changes, cell viability, apoptosis, and oxidative damage–related factors. Western blot determined key proteins in the p38 MAPK signaling. Results indicated that I/R induced the increase of inflammatory factors, lung weight, filtration coefficient, bronchoalveolar lavage fluid protein content, apoptosis, neutrophil, and lung peroxidation, and H/R caused cell growth inhibition, apoptosis, and oxidative damage-related factors’ release. EPO attenuated I/R-induced injury in vivo and in vitro. Furthermore, the increase of p-p38, p-JNK, and p-ERK1/2 in lung tissues and cells induced by I/R was downregulated by EPO. Moreover, both EPO and an inhibitor of p38 MAPK (SB203580) alleviated H/R-induced cell injury. Erythropoietin along with SB203580 had more obvious protection effects than EPO alone. Collectively, EPO alleviated I/R-induced ALI by blocking p38 MAPK signaling. The interaction mechanism of EPO with p38 MAPK signaling contributes to understanding the processes of I/R-induced ALI and provides new insights for the disease treatment.



2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.



2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Jiang ◽  
Zhen Zhou ◽  
Qing-tao Meng ◽  
Qian Sun ◽  
Wating Su ◽  
...  

Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway.Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R.Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-)αbut decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-αand MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA.Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway.



2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.



2002 ◽  
Vol 183 (1) ◽  
pp. 70-74 ◽  
Author(s):  
M.Ayhan Kuzu ◽  
Cüneyt Köksoy ◽  
Işınsu Kuzu ◽  
Ismet Gürhan ◽  
Hakan Ergün ◽  
...  


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junli Sun ◽  
Keke Xin ◽  
Chenghui Leng ◽  
Jianlin Ge

Abstract Background Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. Methods A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin–Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. Results As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3′ untranslated region of HMGB3. Conclusions Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3.



2021 ◽  
Vol 263 ◽  
pp. 291
Author(s):  
Georgia Kostopanagiotou ◽  
Efthimios Avgerinos ◽  
Konstantinos Kostopanagiotou ◽  
Nikolaos Arkadopoulos ◽  
Ioanna Andreadou ◽  
...  


2016 ◽  
Vol 96 (10) ◽  
pp. 1087-1104 ◽  
Author(s):  
Qing-Tao Meng ◽  
Chen Cao ◽  
Yang Wu ◽  
Hui-Min Liu ◽  
Wei Li ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document