scholarly journals Experimental Research on Wind-Induced Flag-Swing Piezoelectric Energy Harvesters

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jianjun Liu ◽  
Xianghua Chen ◽  
Yujie Chen ◽  
Hong Zuo ◽  
Qun Li

Piezoelectric cantilever beams, which have simple structures and excellent mechanical/electrical coupling characteristics, are widely applied in energy harvesting. When the piezoelectric cantilever beam is in a wind field, we should consider not only the influence of the wind field on piezoelectric beam but also the electromechanical coupling effect on it. In this paper, we design and test a wind-induced flag-swing piezoelectric energy harvester (PEH). The piezoelectric cantilever beam may vibrate in the wind field by affixing a flexible ribbon to the free end as the windward structure. To fulfill the goal of producing electricity, the flexible ribbon can swing the piezoelectric cantilever in a wind-induced unstable condition. The experimental findings demonstrate that the flag-swing PEH performs well in energy harvesting when the wind field is excited. When the wind speed is 15 m/s, the peak-to-peak output AC voltage may reach 13.88 V. In addition, the voltage at both ends of the closed-loop circuit’s external resistance is examined. The maximum electric power of the PEH may reach 43.4 μW with an external resistance of 650 kΩ. After passing through the AC-DC conversion circuit, the flag-swing PEH has a steady DC voltage output of 1.67 V. The proposed energy harvester transforms wind energy from a wind farm into electrical energy for supply to low-power electronic devices, allowing for the creation and use of green energy to efficiently address the issue of inadequate energy.

2019 ◽  
Vol 8 (4) ◽  
pp. 6332-6337

This paper reviews the piezoelectric energy harvesting from mechanical vibration. The recent development in the microelectronic devices and wireless sensor networks (WSNs) requires continuous power source for better performance. Many researchers have been done to develop a permanent portable power source for microelectronic devices. Micro energy harvesting (MEH) consists of two basic elements; freely available energy and transducer. Energy is everywhere around us in different forms. The energy conversion ability of piezoelectric energy harvester is high among different MEH techniques. A cantilever type piezoelectric energy harvester under different shapes is mostly studied in the last few years. The output of piezoelectric harvester depends upon the deflection produced, more deflection led to more electrical output. The deflection in cantilever beam under different shapes is different. This review paper presents a comparison of different piezoelectric cantilever beam shapes and output generated analyzed in the last decade.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yue Zhao ◽  
Yi Qin ◽  
Lei Guo ◽  
Baoping Tang

Vibration-based energy harvesting technology is the most promising method to solve the problems of self-powered wireless sensor nodes, but most of the vibration-based energy harvesters have a rather narrow operation bandwidth and the operation frequency band is not convenient to adjust when the ambient frequency changes. Since the ambient vibration may be broadband and changeable, a novel V-shaped vibration energy harvester based on the conventional piezoelectric bimorph cantilevered structure is proposed, which successfully improves the energy harvesting efficiency and provides a way to adjust the operation frequency band of the energy harvester conveniently. The electromechanical coupling equations are established by using Euler-Bernoulli equation and piezoelectric equation, and then the coupled circuit equation is derived based on the series connected piezoelectric cantilevers and Kirchhoff's laws. With the above equations, the output performances of V-shaped structure under different structural parameters and load resistances are simulated and discussed. Finally, by changing the angle θ between two piezoelectric bimorph beams and the load resistance, various comprehensive experiments are carried out to test the performance of this V-shaped energy harvester under the same excitation. The experimental results show that the V-shaped energy harvester can not only improve the frequency response characteristic and the output performance of the electrical energy, but also conveniently tune the operation bandwidth; thus it has great application potential in actual structure health monitoring under variable working condition.


Author(s):  
Max Spornraft ◽  
Norbert Schwesinger ◽  
Shlomo Berger

Synchronization opens further ways to improve cantilever-based energy harvesting arrays in view of power output, easier rectification and scaling. Objective of this study is to investigate the synchronization behavior of a cantilever-array based energy harvesting systems. Thereby, synchronization is achieved by mechanical coupling through a so-called “overhang”. Nakajima et al. [1] and Wang et al. [2] already verified this principle for the synchronization of two and three cantilevers, but at constant vibrational excitation. Regarding energy harvesting, no application of this method is presently available. In this paper, we investigate the synchronization behavior of a piezoelectric cantilever-line energy harvester in airflow. The design of the energy harvester bases upon a piezoelectric cantilever-line and a common bluff body, arranged upstream. To investigate synchronization of the cantilevers, three commonly available piezoelectric bimorphs were employed to study synchronization. Mounted on a common bluff body, the effect of overhang material and position was studied. Therefore, different constellations were examined by impulse excitation as well as vortex-induced vibration in a wind channel. In several measurements, we found arrangements and parameters allowing for an in-phase synchronization of neighborly cantilevers of the line. The knowledge gained allows for a direct electrical connection of piezoelectric cantilevers with just one single rectifier unit. Cantilevers coupled with overhangs arranged in the right order oscillate with the same frequency and phase, i.e. without any charge cancellations. This knowledge opens ways to develop basic design rules for the synchronization of cantilevers.


2012 ◽  
Vol 24 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Hao Wu ◽  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee Kiong Soh

Energy harvesting from ambient vibrations using piezoelectric effect is a promising alternative solution for powering small electronics such as wireless sensors. A conventional piezoelectric energy harvester usually consists of a cantilevered beam with a proof mass at its free end. For such a device, the second resonance of the piezoelectric energy harvester is usually ignored because of its high frequency as well as low response level compared to the first resonance. Hence, only the first mode has been frequently exploited for energy harvesting in the reported literature. In this article, a novel compact piezoelectric energy harvester using two vibration modes has been developed. The harvester comprises one main cantilever beam and an inner secondary cantilever beam, each of which is bonded with piezoelectric transducers. By varying the proof masses, the first two resonant frequencies of the harvester can be tuned close enough to achieve useful wide bandwidth. Meanwhile, this compact design efficiently utilizes the cantilever beam by generating significant power output from both the main and secondary beams. An experiment and simulation were carried out to validate the design concept. The results show that the proposed novel piezoelectric energy harvester is more adaptive and functional in practical vibrational circumstances.


Author(s):  
Ming Hui Yao ◽  
Wei Xia ◽  
Wei Zhang ◽  
Jian Yu Jiao

This paper presents a special piezoelectric energy harvester system which is obtained by separating the end of the upper piezoelectric layer of the traditional piezoelectric cantilever beam from its basic layer. A mass I is located at the end of the separated upper piezoelectric layer (SUPL), a mass II and a permanent magnet I are located at the end of the separated lower piezoelectric beam (SLPB) and a permanent magnet II is added in the opposite position of the permanent magnet I and they face each other with same polarities. A nonlinear magnetic force which can broaden the frequency bandwidth of the system is generated mutually on the two permanent magnets. Studies find that this special piezoelectric energy harvester has extremely high energy capture efficiency. In order to further explore the reason of high efficiency, experimental research on its dynamic behavior is carried out. The experimental results show that the vibrations of the SUPL and the SLPB are relatively simple. The dynamic behaviors of the SUPL, the SLPB and the unseparated part are different. The unseparated part of the piezoelectric shows relatively complex nonlinear phenomenon due to the interaction of nonlinear magnetic force and the collision. With the increase of the external excitation frequency, period doubling motion and almost periodic motion appear alternately.


2015 ◽  
Vol 645-646 ◽  
pp. 1189-1194
Author(s):  
Hai Peng Liu ◽  
Shi Qiao Gao ◽  
Lei Jin

Harvesting ambient vibration energy through piezoelectric (PE) means is a popular energy harvesting technique. The merit of applying PE means to supply energy for microelectronic devices is that they can reduce the battery weight and possibly make the device self-powered by harvesting mechanical energy. This investigation will examine the energy generating performance of miniature PE cantilever beam through theoretical modeling, simulation and experiment testing. Through the theoretical analysis of the piezoelectric energy harvesting structure, the expression of open circuit voltage output is obtained. Using ANSYS software, the working performance of piezoelectric cantilever beam is analyzed. On the basis of theoretical analysis and simulation optimization, a set of experimental system is established to test the energy harvesting performance of the piezoelectric cantilever beam. The testing result shows that the harvested energy by the piezoelectric cantilever beam could supply electrical power to some micro electrical devices.


2012 ◽  
Vol 610-613 ◽  
pp. 2583-2588
Author(s):  
Jun Jie Gong ◽  
Ying Ying Xu ◽  
Zhi Lin Ruan

The vibration energy can be converted to electrical energy directly and efficiently using piezoelectric cantilever beam based on piezoelectric effect. Since its structure is simple and its working process is unpoisonous to the environment, the piezoelectric cantilever beam can be used in various fields comprehensively. The present paper perform an analysis on the vibration energy harvesting problem of piezoelectric bimorph cantilever beam. The piezoelectric cantilever model has been formulated using the theory of elasticity mechanics and piezoelectric theory. A prototype of piezoelectric power generator is set up to do vibration test, and the electromechanical coupling FEA model under vibration load is built to simulate its output displacement, stress and voltage. The present numerical results of piezoelectric bimorph cantilever coincide well with our related experimental results, which shows the validity of the present FEA model and the relate results.


2020 ◽  
Vol 12 (4) ◽  
pp. 506-512
Author(s):  
Ashok Batra ◽  
Almuatasim Alomari ◽  
James Sampson ◽  
Alak Bandyopadhyay ◽  
Mohan Aggarwal

Piezoelectric energy conversion has received considerable attention for vibration-to-electric energy conversion over the past decade. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure. This paper presents a comparison between unimorph and bimorph cantilever beam having a number of segmented PMN-PT piezo-elements on the input and output power. The numerical simulation was carried out by applying the finite element analysis (FEA) using COMSOL multi-physics software in order to predict output voltage and power over a frequency range of 60–200 Hz for the first resonant frequencies. The simulation results show maximum output voltage and power harvested of 7.38 V and 135.73 μW, respectively, by the unimorph piezoelectric energy harvester at resonant frequency value of 84 Hz with electromechanical coupling factor (ke) of 77.29%. These results highlight that the highest value of the output electrical power can be obtained when the piezoelectric element is attached on the top of a clamped end of a cantilever piezoelectric beam. Moreover, in an unimorph or bimorph cantilever beam system, increasing the number of piezoelectric elements results in a higher resonant frequency shift and significantly decreasing in the harvested power.


Author(s):  
X. F. Zhang ◽  
S. D. Hu ◽  
H. S. Tzou

Flexoelectricity, the electromechanical coupling of the polarization response and strain gradient, occurs in solid crystalline dielectrics of any symmetry or asymmetric crystals. Different from the piezoelectric energy harvester, an energy harvester based on the direct flexoelectric effect is designed in this study. The energy harvester consists of an elastic ring and a flexoelectric patch laminated on its outer surface. Due to the direct flexoelectric effect, the electric energy induced by the strain gradient of the flexoelectric patch is harvested to power the electric device when the ring is subjected to mechanical excitations. Electromechanical coupling equation of the flexoelectric energy harvesting system in close-loop circuit condition is derived. In this study, dynamic response, output power across the external resistor and energy harvesting results are evaluated when the ring is excited by a harmonic point loading. The output power is a function of the external excitation frequency, the external equivalent resistance, the flexoelectric patch’s thickness and other design parameters. Case studies of those parameters for the flexoelectric energy harvester are presented to optimize the output power. Results show that the optimal excitation frequency is equal to the natural frequency for each mode, and the optimal equivalent resistance is dependent of the equivalent capacitance of the flexoelectric patch and the excitation frequency. Since the output power of the flexoelectric energy harvester is similar to that of the piezoelectric energy harvester, comparison of the two harvesters is also discussed. With all the optimal conditions discussed, it can supply a design principle in the engineering applications.


2012 ◽  
Vol 24 (2) ◽  
pp. 180-193 ◽  
Author(s):  
Yu-Yin Chen ◽  
Dejan Vasic ◽  
Yuan-Ping Liu ◽  
François Costa

In this article, a piezoelectric energy harvesting device comprises a bistable vibrating cantilever beam and a switching-type interface circuit (synchronized switching harvesting on an inductor) is proposed, and the resulting performance is compared to the traditional linear technique. It was known that the synchronized switching techniques increase efficiently the output power of the piezoelectric energy harvester for low-coupled structures. However, the traditional piezoelectric energy harvester based on a cantilever beam is only efficient at resonance. To broaden the available bandwidth, a bistable nonlinear technique was proposed. In this article, the bistable technique and synchronized switching harvesting on an inductor interface are combined together to accomplish a more efficient broadband piezoelectric energy harvester. The power flow and work cycles are adopted to simplify the analysis of the switching techniques and then summarize the increasing performance of the nonlinear piezoelectric harvester. Finally, simulation results and experimental validations show that the proposed integrated device owns larger bandwidth and collects more harvested energy.


Sign in / Sign up

Export Citation Format

Share Document