scholarly journals CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shutian Yu ◽  
Xinyue Ni ◽  
Fansheng Chen

The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell Reynolds number is developed. Subsequently, the dependence of the turbulence model and the discretization scheme is considered. It is suggested that the appropriate value of wall cell Reynolds number is 1 through careful comparison between one another and with the available experimental data. The excessive number of cells is not recommended due to time-consuming computation. It can be seen from the results that the combination of the AUSM+ discretization scheme and the Spalart-Allmaras turbulence model has the highest accuracy. In this work, the heat flux error of the stagnation point is within 1%, and the overall average relative error is within 10%.

2020 ◽  
Vol 8 (5) ◽  
pp. 1950-1954

Energy extraction by solar energy harnessing method is one of the most futuristic approach to accelerate towards green technologies. The parabolic trough solar collectors are most widely used entities in entire world for solar water heaters. The existing problem of low rate of water heating is disadvantageous for its commercial use. Hence the study focuses on observing the effect of greenhouse when the evacuated tubes are equipped with most common greenhouse gas CO_2 (Carbon dioxide). The simulations were carried out on Ansys (FLUENT) at steady state conditions. The parameters observed to compare the rate of boiling are Cell Reynolds number, Surface skin friction and the average steady state temperature. The greenhouse gas seems effective in increasing the rate of boiling due to which the Cell Reynolds number has increased in both minima and maxima.


2013 ◽  
Author(s):  
Henri J. L. van der Heiden ◽  
Peter van der Plas ◽  
Arthur E. P. Veldman ◽  
Roel W. C. P. Verstappen ◽  
Roel Luppes

In offshore applications, details of viscous flow effects can become relevant when predicting e.g. drag forces on the columns of oil drilling rigs, or the flow around a semisubmersible in figure 1. This motivates a novel approach for efficiently simulating viscous flow effects at high Reynolds numbers with the CFD simulation tool ComFLOW. In ComFLOW, the Navier–Stokes equations can be solved for one-phase and for two-phase flow. The equations are discretized second-order in space, and second-order in time. An Improved Volume-of-Fluid (IVOF) algorithm is used for free-surface advection and reconstruction [1, 2]. Modeling viscous flow effects in high Reynolds number flows requires a turbulence model that provides accurate results on coarse grids. We pursue to achieve a high local grid resolution in a computationally efficient manner. Both approaches are tested for flows around a square cylinder: grid refinement at Reynolds numbers 10 and 100, and the turbulence model at Reynolds number 22,000.


2012 ◽  
Vol 204-208 ◽  
pp. 4738-4741
Author(s):  
Yu Chun Li ◽  
Xiao Jie Zhang ◽  
Shi Wen Jia

The method of computational fluid dynamics (CFD, Fluent code) was applied to simulate the Strouhal numbers of the empty and fulfilled U-shaped sections. Based on the N-S equation and k-ε turbulence model, the effects of Reynolds numbers and height/width ratios of the sections on the Strouhal numbers were investigated. The results of this study show that the Reynolds number has little influence on the Strouhal numbers, which decrease with the increase of height/width ratios of the sections. The conclusion of present study provides a foundation for the further study of vortex-induced vibration of U-shaped aqueduct bridges.


2015 ◽  
Vol 758 ◽  
pp. 35-44 ◽  
Author(s):  
Budiarso ◽  
Ahmad Indra Siswantara ◽  
Steven Darmawan ◽  
Harto Tanujaya

Inverse-turbulent Prandtl number (α) is one of important parameters on RNG k-ε turbulence model which represent the cascade energy of the flow, which occur in cylindrical curved-pipe. Although many research has been done, turbulent flow in curved pipe is still a challanging problem. The range of α of the basic RNG k-ε turbulence model described by Yakhot and Orszag (1986) with range 1-1.3929 has to be more specific on Reynolds number (Re) and geometry. However, since the viscosity is sensitive to velocity and temperature, the reference of α is needed on specific range of Reynolds number. This paper is aimed to gain optimum inverse-turbulent Prandtl number of the flow in curved pipe with upper and lower Re which simulated numerically with CFD. The Re at the inlet side were; Re = 13000 and Re = 63800 on cylindrical curved-pipe with r/D of 1.607.The inverse-turbulent Prandtl number (α) were varied to 1, 1.1, 1.2, 1.3. The curved pipe was an cylindrical air pipe with 43mm inlet diameter. The computational grid that is used for CFD numerical simulation with CFDSOF®, hexagonal-surface fitted consist of 139440 cells. CFD simulation done with inverse-turbulent Prandtl number α varies by 1, 1.1, 1.2, dan 1.3. The wall is assumed to zero-roughness. The CFD simulation generated several results; at Re 13000, the value of α did not affect the turbulent parameter which also confirmed the basic therory of RNG k-ε turbulence model that the minimum Re of α is 2.5 x 104. At Re = 63800, the use of α of 1.1 shows more turbulent flow domination on molecular flow. Lower eddy dissipation by 1.67%, increasing turbulent kinetic energy by 2.2%, and Effective viscosity increase by 4.7% compared to α = 1. Therefore, the use of α 1.1 is the most suitable value to be used to represent turbulent flow in curved pipe with RNG k-ε turbulence model with Re 63800 and r/D 1.607 among others value that have discussed in this paper.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


2021 ◽  
Author(s):  
Matthew Searle ◽  
Arnab Roy ◽  
James Black ◽  
Doug Straub ◽  
Sridharan Ramesh

Abstract In this paper, experimental and numerical investigations of three variants of internal cooling configurations — dimples only, ribs only and ribs with dimples have been explored at process conditions (96°C and 207bar) with sCO2 as the coolant. The designs were chosen based on a review of advanced internal cooling features typically used for air-breathing gas turbines. The experimental study described in this paper utilizes additively manufactured square channels with the cooling features over a range of Reynolds number from 80,000 to 250,000. Nusselt number is calculated in the experiments utilizing the Wilson Plot method and three heat transfer characteristics — augmentation in Nusselt number, friction factor and overall Thermal Performance Factor (TPF) are reported. To explore the effect of surface roughness introduced due to additive manufacturing, two baseline channel flow cases are considered — a conventional smooth tube and an additively manufactured square tube. A companion computational fluid dynamics (CFD) simulation is also performed for the corresponding cooling configurations reported in the experiments using the Reynolds Averaged Navier Stokes (RANS) based turbulence model. Both experimental and computational results show increasing Nusselt number augmentation as higher Reynolds numbers are approached, whereas prior work on internal cooling of air-breathing gas turbines predict a decay in the heat transfer enhancement as Reynolds number increases. Comparing cooling features, it is observed that the “ribs only” and “ribs with dimples” configurations exhibit higher Nusselt number augmentation at all Reynolds numbers compared to the “dimples only” and the “no features” configurations. However, the frictional losses are almost an order of magnitude higher in presence of ribs.


Author(s):  
Markus Waesker ◽  
Bjoern Buelten ◽  
Norman Kienzle ◽  
Christian Doetsch

Abstract Due to the transition of the energy system to more decentralized sector-coupled technologies, the demand on small, highly efficient and compact turbines is steadily growing. Therefore, supersonic impulse turbines have been subject of academic research for many years because of their compact and low-cost conditions. However, specific loss models for this type of turbine are still missing. In this paper, a CFD-simulation-based surrogate model for the velocity coefficient, unique incidence as well as outflow deviation of the blade, is introduced. This surrogate model forms the basis for an exemplary efficiency optimization of the “Colclough cascade”. In a first step, an automatic and robust blade design methodology for constant-channel blades based on the supersonic turbine blade design of Stratford and Sansome is shown. The blade flow is fully described by seven geometrical and three aerodynamic design parameters. After that, an automated numerical flow simulation (CFD) workflow for supersonic turbine blades is developed. The validation of the CFD setup with a published supersonic axial turbine blade (Colclough design) shows a high consistency in the shock waves, separation zones and boundary layers as well as velocity coefficients. A design of experiments (DOE) with latin hypercube sampling and 1300 sample points is calculated. This CFD data forms the basis for a highly accurate surrogate model of supersonic turbine blade flow suitable for Mach numbers between 1.1 and 1.6. The throat-based Reynolds number is varied between 1*104 and 4*105. Additionally, an optimization is introduced, based on the surrogate model for the Reynolds number and Mach number of Colclough and no degree of reaction (equal inlet and outlet static pressure). The velocity coefficient is improved by up to 3 %.


Sign in / Sign up

Export Citation Format

Share Document