scholarly journals MiR-130a-3p Regulates the Glycolysis via Targeting PDK1 in Hepatocellular Carcinoma

Author(s):  
Hai-Long Li ◽  
Jie Shi ◽  
Qi Qi ◽  
Yue Huang ◽  
Chi Liu ◽  
...  

Abstract MiR-130a-3p has been certified to have low expression in several types of tumors. However, the function of miR-130a-3p in glucose metabolism and hepatocellular carcinoma progression is still elusive. Here we report that miR-130a-3p has explicitly low expression in human HCC tissues and cells and is closely related to the patient's tumor size and grade. Overexpression of miR-130a-3p significantly inhibits the glucose metabolism, proliferation and migration of HCC cells in vitro. In order to further study the effects of miR-130a-3p in the glucose metabolism of HCC cells, we found that overexpression of miR-130a-3p significantly inhibited the expression of pyruvate dehydrogenase kinase 1 (PDK1). Consistently, we confirmed that PDK1 is the target gene of miR-130a-3p through dual luciferase reporter gene assays. Cell rescue experiments showed that PDK1 inhibitors reversed the enhancement of cell proliferation, migration and glucose metabolism by miR-130a-3p inhibitor in Hep3B cells. In terms of mechanism, overexpression of miR-130a-3p targeted and inhibited the expression of PDK1, after which pyruvate dehydrogenase (PDH) is activated, thus glycolysis is inhibited, the production of lactic acid and ATP is reduced, and the ability to proliferate and migrate in HCC cells is weakened. In conclusion, our study highlights efforts to target PDK1 and miR-130a-3p as potential therapeutic strategies for the treatment of HCC.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Zhang ◽  
Jing Zhang ◽  
Pengfei Li ◽  
Ting Li ◽  
Zhiqin Zhou ◽  
...  

AbstractMacrophage-derived exosomes (Mφ-Exo) have multidimensional involvement in tumor initiation, progression, and metastasis, but their regulation in hepatocellular carcinoma (HCC) is not fully understood. RBPJ has been implicated in macrophage activation and plasticity. In this study we assess the role of exosomes derived from RBPJ-overexpressed macrophages (RBPJ+/+ Mφ-Exo) in HCC. The circular RNA (circRNA) profiles in RBPJ+/+ Mφ-Exo and THP-1-like macrophages (WT Mφ)-Exo was evaluated using circRNA microarray. CCK-8, Transwell, and flow cytometry analyses were used to evaluate the function of Mφ-Exo-circRNA on HCC cells. Luciferase reporter assays, RNA immunoprecipitation, and Pearson’s correlation analysis were used to confirm interactions. A nude mouse xenograft model was used to further analyze the functional significance of Mφ-Exo-cirRNA in vivo. Our results shown that hsa_circ_0004658 is upregulated in RBPJ+/+ Mφ-Exo compared to WT Mφ-Exo. RBPJ+/+ Mφ-Exo and hsa_circ_0004658 inhibits proliferation and promotes apoptosis in HCC cells, whereas hsa_circ_0004658 knockdown stimulated cell proliferation and migration but restrained apoptosis in vitro and promotes tumor growth in vivo. The effects of RBPJ+/+ Mφ-Exo on HCC cells can be reversed by the hsa_circ_0004658 knockdown. Mechanistic investigations revealed that hsa_circ_0004658 acts as a ceRNA of miR-499b-5p, resulting in the de-repression of JAM3. These results indicate that exosome circRNAs secreted from RBPJ+/+ Mφ inhibits tumor progression through the hsa_circ_0004658/miR-499b-5p/JAM3 pathway and hsa_circ_0004658 may be a diagnostic biomarker and potential target for HCC therapy.


Author(s):  
Jun-Jie Hu ◽  
Cui Zhou ◽  
Xin Luo ◽  
Sheng-Zheng Luo ◽  
Zheng-Hong Li ◽  
...  

Abstract Background Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) have regulatory functions in hepatocellular carcinoma (HCC). The link between lincSCRG1 and HCC remains unclear. Methods To explore the lincSCRG1 regulation axis, bioinformatics, RIP and luciferase reporter assay were performed. The expressions of lincSCRG1-miR26a-SKP2 were detected in HCC tissues and cell lines through qPCR and western blot. The functions of HCC cells were investigated through in vitro assays (MTT, colony formation, transwell and flow cytometry) and the inner effect of lincSCRG1-miR26a in vivo was evaluated by xenografts and liver metatstatic nude mice models. Results LincSCRG1 was found to be strongly elevated in human HCC tissues and cell lines. MiR26a and S phase kinase-related protein 2 (SKP2) were predicted as the target miRNA for lincSCRG1 and the target gene for miR26a with direct binding sites, respectively. LincSCRG1 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR26a and derepression of SKP2 in HCC cells. Both overexpression of lincSCRG1 (ov-lincSCRG1) and inhibition of miR26a (in-miR26a) obviously stimulated cellular viability, colony formation, migration and proliferation of S phase cells and also significantly increased the protein levels of cyclinD1, CDK4, MMP2/3/9, Vimentin, and N-cadherin or inhibited the protein level of E-cadherin of HCC cells, while knockdown of lincSCRG1 (sh-lincSCRG1) and upregulation of miR26a (mi-miR26a) had the opposite effects on HCC cells. Cotransfection of in-miR26a or overexpression of SKP2 (ov-SKP2) with sh-lincSCRG1 could rescue the anticancer functions of sh-lincSCRG1, including suppressing proliferation and migration of HCC cells. Additionally, sh-lincSCRG1 could effectively inhibit the growth of subcutaneous xenograft tumours and lung metastasis, while the anticancer effect of sh-lincSCRG1 could be reversed by cotransfection of in-miR26a. Conclusions LincSCRG1 acts as a ceRNA of miR26a to restrict its ability to derepress SKP2, thereby inducing the proliferation and migration of HCC cells in vitro and in vivo. Depletion of lincSCRG1 could be used as a potential therapeutic approach in HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kunwei Niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Background. Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long noncoding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. Our study aims to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Objective. To study the in vivo and in vitro localization and biological effects of URHC on liver cancer cells. Through bioinformatics analysis, dual-luciferase reporter gene analysis and rescue experiments revealed the possible mechanism of URHC. Methods. RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenograft experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC. Results. URHC silencing may inhibit the HCC cells’ proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggestive of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p. Conclusion. Together, our study elucidated the role of URHC as a miRNA sponge in HCC and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cheng Zeng ◽  
Shaojun Ye ◽  
Yu Chen ◽  
Qu Zhang ◽  
Yan Luo ◽  
...  

Hepatocellular carcinoma (HCC) is the most prevalent type of hepatic carcinoma. Long noncoding RNAs (lncRNAs) are considered crucial regulators of gene expression; however, their functions in HCC are not well understood. Thus, the present study is aimed at elucidating the functions of the lncRNA HOXA-AS3 in HCC. The functions of the HOXA-AS3/miR-455-5p/programmed death-ligand 1 (PD-L1) axis were investigated in vitro via qRT-PCR and dual-luciferase reporter assays. The effect of HOXA-AS3 expression on tumor growth and metastasis was assessed using a mouse xenograft model. High HOXA-AS3 expression was observed in the HCC cell lines. Furthermore, overexpression of HOXA-AS3 in HCC cells enhanced proliferation, migration, and invasion, regulated the cell cycle, and retarded apoptosis. We also identified an miR-455-5p binding site in HOXA-AS3. By sponging miR-455-5p, HOXA-AS3 increased the expression of PD-L1. Additionally, both the inhibition of PD-L1 and overexpression of miR-455-5p reversed the effects on cell proliferation and invasion triggered by the overexpression of HOXA-AS3. In conclusion, HOXA-AS3 modulated the functions of HCC cells through the miR-455-5p/PD-L1 axis. Therefore, HOXA-AS3 may be a novel therapeutic target for HCC.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 16 (1) ◽  
pp. 69-83
Author(s):  
Junwei Shu ◽  
Jiayuan Du ◽  
Futao Wang ◽  
Yong Cheng ◽  
Gangxin Chen ◽  
...  

Abstract Several articles have indicated that circular RNAs are involved in pathogenesis of human cancers. Nevertheless, the role of circ_0091579 in hepatocellular carcinoma (HCC) progression remains to be revealed. Quantitative reverse transcriptase polymerase chain reaction was carried out to examine the expression of circ_0091579 and miR-1287. The proliferation of HCC cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was performed to analyze cell cycle progression and apoptosis. Western blot assay was conducted to detect the protein expression of CyclinD1, Cleaved caspase3, and pyruvate dehydrogenase kinase 2 (PDK2). Cell glycolysis was evaluated by measuring the uptake of glucose, the production of lactate, and extracellular acidification rate. The target relationship between miR-1287 and circ_0091579 or PDK2 was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA-pull down assay. The enrichment of circ_0091579 was enhanced in HCC tissues (n = 77) and four HCC cell lines (HB611, Huh-7, MHCC97, and SNU423) compared with adjacent non-tumor tissues (n = 77) and normal human liver cell line THLE-2. Circ_0091579 mediated the promotion of proliferation and glycolysis and the suppression of apoptosis of HCC cells. MiR-1287 was a direct target of circ_0091579 in HCC cells. MiR-1287 knockdown reversed the effects caused by circ_0091579 interference on the functions of HCC cells. PDK2 could bind to miR-1287 in HCC cells. Circ_0091579 upregulated the enrichment of PDK2 by acting as a sponge of miR-1287 in HCC cells. The influence caused by circ_0091579 intervention on HCC cells was attenuated by overexpression of PDK2. Circ_0091579 interference impeded the progression of HCC in vivo. Circ_0091579 deteriorated HCC by promoting the proliferation and glycolytic metabolism and suppressing the apoptosis of HCC cells via miR-1287/PDK2 axis.


2021 ◽  
Author(s):  
Yilin Hu ◽  
Huiling Sun ◽  
Qiping Lu ◽  
Hongliang Mei ◽  
Rong Liu

Abstract Background MiR-92a-3p has been reported to play a part in hepatocellular carcinoma (HCC), a leading type of lethal cancer around the world. In this study, we explored the function and mechanism of miR-92a-3p in HCC. Methods Firstly, the expression of miR-92a-3p in HCC along with its relationship with PTEN was analyzed through biological information. To investigate the impact of miR-92a-3p on the migration and invasion of HCC cells, we performed scratch wound healing and transwell assays. Next, RT-qPCR, western blot and dual luciferase reporter gene assays were conducted to determine whether PTEN is targeted by miR-92a-3p, which was then verified through rescue assays. Afterwards, in vivo animal experiments were carried out to determine the function of miR-92a-3p in HCC tissues. As an established fact, PETN is an anti-oncogene with frequent mutation inactivation in human cancers. Thus, we used the database to predict the mutation of PETN and its mutation frequency. Finally, CRISPR-cas12a was applied to detect the R130Q mutation on PETN in HCC clinical samples. Results This study found that the migration and invasion of HCC could be suppressed by inhibiting miR-92a-3p, which regulates the proliferation, migration and invasion of HCC through the regulation of PETN. The bioinformatics analysis indicated higher mutation frequency of R130Q/G/L* site on the PETN gene, and greater impact of R130Q site mutation on the progression of HCC. CRISPR-cas12a detected 26 cases of R130Q mutations on PTEN in 40 HCC clinical samples Conclusion Collectively, this study revealed that miR-92a-3p promoted the invasion and migration of HCC by targeting PTEN, and that the stability of PETN also affected the development of HCC, which may enrich and deepen our knowledge on the progression of HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2020 ◽  
Vol 168 (5) ◽  
pp. 535-546 ◽  
Author(s):  
Yuepei Zou ◽  
Zhonghua Sun ◽  
Shuangming Sun

Abstract Long non-coding RNA (lnc) HCG18 has been reported to contribute progression of a variety of tumours. However, its roles in hepatocellular carcinoma (HCC) remains unknown. In the current study, we intended to uncover the biological functions of HCG18 in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of HCG18, microRNA-214-3p (miR-214-3p) and centromere protein M (CENPM) messenger RNA (mRNA). The role of HCG18 in the growth and migration were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay and flow cytometry in vitro and animal experiments in vivo. The results showed that HCG18 was highly expressed in HCC tissues. HCG18 silencing inhibited the proliferation and migration while induced the apoptosis of HCC cells. Besides, miR-214-3p was down-regulated in HCC cells. Further experiments revealed that miR-214-3p could directly bind to HCG18 and exerted an anti-tumour role to counteracted siHCG18-1-mediated influence in HCC cells. Moreover, miR-214-3p could directly interact with CENPM mRNA and down-regulating the expression of CENPM. While HCG18 could up-regulate the expression of CENPM through acting as a sponge of miR-214-3p. Therefore, those results suggested HCG18 functioned as an oncogene to promote the proliferation and migration of HCC cells via miR-214-3p/CENPM axis.


Sign in / Sign up

Export Citation Format

Share Document