scholarly journals Identification of Keratinocyte Differentiation-Involved Genes for Metastatic Melanoma by Gene Expression Profiles

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Kezhu Li ◽  
Shu Guo ◽  
Shuang Tong ◽  
Qiang Sun ◽  
Shifeng Jin ◽  
...  

Background. Melanoma is the deadliest type of skin cancer. Until now, its pathological mechanisms, particularly the mechanism of metastasis, remain largely unknown. Our study on the identification of genes in association with metastasis for melanoma provides a novel understanding of melanoma. Methods. From the Gene Expression Omnibus (GEO) database, the gene expression microarray datasets GSE46517, GSE7553, and GSE8401 were downloaded. We made use of R aiming at analyzing the differentially expressed genes (DEGs) between metastatic and nonmetastatic melanoma. R was also used in differentially expressed miRNA (DEM) data mining from GSE18509, GSE19387, GSE24996, GSE34460, GSE35579, GSE36236, and GSE54492 datasets referring to Li’s study. Based on the DEG and DEM data, we performed functional enrichment analysis through the application of the DAVID database. Furthermore, we constructed the protein-protein interaction (PPI) network and established functional modules by making use of the STRING database. Through making use of Cytoscape, the PPI results were visualized. We predicted the targets of the DEMs through applying TargetScan, miRanda, and PITA databases and identified the overlapping genes between DEGs and predicted targets, followed by the construction of DEM-DEG pair network. The expressions of these keratinocyte differentiation-involved genes in Module 1 were identified based on the data from TCGA. Results. 239 DEGs were screened out in all 3 datasets, which were inclusive of 21 positively regulated genes and 218 negatively regulated genes. Based on these 239 DEGs, we finished constructing the PPI network which was formed from 225 nodes and 846 edges. We finished establishing 3 functional modules. And we analyzed 92 overlapping genes and 26 miRNA, including 11 upregulated genes targeted by 11 negatively regulated DEMs and 81 downregulated genes targeted by 15 positively regulated DEMs. As proof of the differential expression of metastasis-associated genes, eleven keratinocyte differentiation-involved genes, including LOR, EVPL, SPRR1A, FLG, SPRR1B, SPRR2B, TGM1, DSP, CSTA, CDSN, and IVL in Module 1, were obviously downregulated in metastatic melanoma tissue in comparison with primary melanoma tissue based on the data from TCGA. Conclusion. 239 melanoma metastasis-associated genes and 26 differentially expressed miRNA were identified in our study. The keratinocyte differentiation-involved genes may take part in melanoma metastasis, providing a latent molecular mechanism for this disease.

2020 ◽  
Vol 26 (29) ◽  
pp. 3619-3630
Author(s):  
Saumya Choudhary ◽  
Dibyabhaba Pradhan ◽  
Noor S. Khan ◽  
Harpreet Singh ◽  
George Thomas ◽  
...  

Background: Psoriasis is a chronic immune mediated skin disorder with global prevalence of 0.2- 11.4%. Despite rare mortality, the severity of the disease could be understood by the accompanying comorbidities, that has even led to psychological problems among several patients. The cause and the disease mechanism still remain elusive. Objective: To identify potential therapeutic targets and affecting pathways for better insight of the disease pathogenesis. Method: The gene expression profile GSE13355 and GSE14905 were retrieved from NCBI, Gene Expression Omnibus database. The GEO profiles were integrated and the DEGs of lesional and non-lesional psoriasis skin were identified using the affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes pathways of the DEGs were analyzed using clusterProfiler. Cytoscape, V3.7.1 was utilized to construct protein interaction network and analyze the interactome map of candidate proteins encoded in DEGs. Functionally relevant clusters were detected through Cytohubba and MCODE. Results: A total of 1013 genes were differentially expressed in lesional skin of which 557 were upregulated and 456 were downregulated. Seven dysregulated genes were extracted in non-lesional skin. The disease gene network of these DEGs revealed 75 newly identified differentially expressed gene that might have a role in development and progression of the disease. GO analysis revealed keratinocyte differentiation and positive regulation of cytokine production to be the most enriched biological process and molecular function. Cytokines -cytokine receptor was the most enriched pathways. Among 1013 identified DEGs in lesional group, 36 DEGs were found to have altered genetic signature including IL1B and STAT3 which are also reported as hub genes. CCNB1, CCNA2, CDK1, IL1B, CXCL8, MKI 67, ESR1, UBE2C, STAT1 and STAT3 were top 10 hub gene. Conclusion: The hub genes, genomic altered DEGs and other newly identified differentially dysregulated genes would improve our understanding of psoriasis pathogenesis, moreover, the hub genes could be explored as potential therapeutic targets for psoriasis.


2020 ◽  
Author(s):  
Na Li ◽  
Ru-feng Bai ◽  
Chun Li ◽  
Li-hong Dang ◽  
Qiu-xiang Du ◽  
...  

Abstract Background: Muscle trauma frequently occurs in daily life. However, the molecular mechanisms of muscle healing, which partly depend on the extent of the damage, are not well understood. This study aimed to investigate gene expression profiles following mild and severe muscle contusion, and to provide more information about the molecular mechanisms underlying the repair process.Methods: A total of 33 rats were divided randomly into control (n = 3), mild contusion (n = 15), and severe contusion (n = 15) groups; the contusion groups were further divided into five subgroups (1, 3, 24, 48, and 168 h post-injury; n = 3 per subgroup). Then full genome microarray of RNA isolated from muscle tissue was performed to access the gene expression changes during healing process.Results: A total of 2,844 and 2,298 differentially expressed genes were identified in the mild and severe contusion groups, respectively. The analysis of the overlapping differentially expressed genes showed that there are common mechanisms of transcriptomic repair of mild and severe contusion within 48 h post-contusion. This was supported by the results of principal component analysis, hierarchical clustering, and weighted gene co‐expression network analysis of the 1,620 coexpressed genes in mildly and severely contused muscle. From these analyses, we discovered that the gene profiles in functional modules and temporal clusters were similar between the mild and severe contusion groups; moreover, the genes showed time-dependent patterns of expression, which allowed us to identify useful markers of wound age. We then performed an analysis of the functions of genes (including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway annotation, and protein–protein interaction network analysis) in the functional modules and temporal clusters, and the hub genes in each module–cluster pair were identified. Interestingly, we found that genes downregulated within 24−48 h of the healing process were largely associated with metabolic processes, especially oxidative phosphorylation of reduced nicotinamide adenine dinucleotide phosphate, which has been rarely reported. Conclusions: These results improve our understanding of the molecular mechanisms underlying muscle repair, and provide a basis for further studies of wound age estimation.


2021 ◽  
Author(s):  
Pejman Morovat ◽  
Saman Morovat ◽  
Arash M. Ashrafi ◽  
Shahram Teimourian

Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide, which has a high mortality rate and poor treatment outcomes with yet unknown molecular basis. It seems that gene expression plays a pivotal role in the pathogenesis of the disease. Circular RNAs (circRNAs) can interact with microRNAs (miRNAs) to regulate gene expression in various malignancies by acting as competitive endogenous RNAs (ceRNAs). However, the potential pathogenesis roles of the ceRNA network among circRNA/miRNA/mRNA in HCC are unclear. In this study, first, the HCC circRNA expression data were obtained from three Gene Expression Omnibus microarray datasets (GSE164803, GSE94508, GSE97332), and the differentially expressed circRNAs (DECs) were identified using R limma package. Also, the liver hepatocellular carcinoma (LIHC) miRNA and mRNA sequence data were retrieved from TCGA, and differentially expressed miRNAs (DEMIs) and mRNAs (DEGs) were determined using the R DESeq2 package. Second, CSCD website was used to uncover the binding sites of miRNAs on DECs. The DECs' potential target miRNAs were revealed by conducting an intersection between predicted miRNAs from CSCD and downregulated DEMIs. Third, some related genes were uncovered by intersecting targeted genes predicted by miRWalk and targetscan online tools with upregulated DEGs. The ceRNA network was then built using the Cytoscape software. The functional enrichment and the overall survival time of these potential targeted genes were analyzed, and a PPI network was constructed in the STRING database. Network visualization was performed by Cytoscape, and ten hub genes were detected using the CytoHubba plugin tool. Four DECs (hsa_circ_0000520, hsa_circ_0008616, hsa_circ_0070934, hsa_circ_0004315) were obtained and six miRNAs (hsa-miR-542-5p, hsa-miR-326, hsa-miR-511-5p, hsa-miR-195-5p, hsa-miR-214-3p, and hsa-miR-424-5p) which are regulated by the above DECs were identified. Then 543 overlapped genes regulated by six miRNAs mentioned above were predicted. Functional enrichment analysis showed that these genes are mostly associated with cancer regulation functions. Ten hub genes (TTK،AURKB, KIF20A، KIF23، CEP55، CDC6، DTL، NCAPG، CENPF، PLK4) have been screened from the PPI network of the 204 survival-related genes. KIF20A, NCAPG, TTK, PLK4, and CDC6 were selected for the highest significant p-values. In the end, a circRNA-miRNA-mRNA regulatory axis was established for five final selected hub genes. This study implies the potential pathogenesis of the obtained network and proposes that the two DECs (has_circ_0070934 and has_circ_0004315) may be important prognostic factor for HCC.


2020 ◽  
Author(s):  
Yumei Li ◽  
Bifei Li ◽  
Fan Chen ◽  
Weiyu Shen ◽  
Vladimir L. Katanaev ◽  
...  

Abstract Background Metastasis is the leading cause of melanoma mortality. Current therapies are rarely curative for metastatic melanoma, revealing the urgent need to identify more effective preventive and therapeutic targets. This study aimed to screen for the key core genes and molecular mechanisms related to the metastasis of melanoma. Methods Gene expression profile, GSE8401 including 31 primary melanoma and 52 metastatic melanoma clinical samples, was downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between metastatic melanoma and primary melanoma were screened using GEO2R. Assays of gene ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and protein-protein interaction (PPI) were performed to visualize these DEGs through Database for Annotation, Visualization and Integrated Discovery (DAVID) software and Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with Molecular Complex Detection (MCODE) plug-in tools. Top 10 genes with high degree were defined as hub genes. Furthermore, paired post-metastatic melanoma cells and pre-metastatic melanoma cells were established by experimental mouse model of melanoma metastasis to verify the expression of these hub genes. Results 424 DEGs between the metastatic melanoma and primary melanoma were screened, including 60 upregulated genes enriched in ECM-receptor interaction and progesterone-mediated oocyte maturation and 364 downregulated genes enriched in amoebiasis, melanogenesis, and ECM-receptor interaction. CDH1, EGFR, KRT5, COL17A1, KRT14, IVL, DSP, DSG1, FLG and CDK1 were defined as the hub genes. . In addition, paired post-metastatic melanoma cells (A375M) and pre-metastatic melanoma cells (A375) were established and qRT-PCR analysis confirmed the expression of the hub genes during melanoma metastasis. Conclusion This bioinformatic study has provided a deeper understanding of the molecular mechanisms of melanoma metastasis. KRT5, IVL and COL17A1 have emerged as possible biomarkers and therapeutic targets in metastasis of melanoma.


2021 ◽  
Vol 18 (6) ◽  
pp. 8997-9015
Author(s):  
Ahmed Hammad ◽  
◽  
Mohamed Elshaer ◽  
Xiuwen Tang ◽  
◽  
...  

<abstract> <p>Colorectal cancer (CRC) is one of the most common malignancies worldwide. Biomarker discovery is critical to improve CRC diagnosis, however, machine learning offers a new platform to study the etiology of CRC for this purpose. Therefore, the current study aimed to perform an integrated bioinformatics and machine learning analyses to explore novel biomarkers for CRC prognosis. In this study, we acquired gene expression microarray data from Gene Expression Omnibus (GEO) database. The microarray expressions GSE103512 dataset was downloaded and integrated. Subsequently, differentially expressed genes (DEGs) were identified and functionally analyzed via Gene Ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG). Furthermore, protein protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape software to identify hub genes; however, the hub genes were subjected to Support Vector Machine (SVM), Receiver operating characteristic curve (ROC) and survival analyses to explore their diagnostic values. Meanwhile, TCGA transcriptomics data in Gene Expression Profiling Interactive Analysis (GEPIA) database and the pathology data presented by in the human protein atlas (HPA) database were used to verify our transcriptomic analyses. A total of 105 DEGs were identified in this study. Functional enrichment analysis showed that these genes were significantly enriched in biological processes related to cancer progression. Thereafter, PPI network explored a total of 10 significant hub genes. The ROC curve was used to predict the potential application of biomarkers in CRC diagnosis, with an area under ROC curve (AUC) of these genes exceeding 0.92 suggesting that this risk classifier can discriminate between CRC patients and normal controls. Moreover, the prognostic values of these hub genes were confirmed by survival analyses using different CRC patient cohorts. Our results demonstrated that these 10 differentially expressed hub genes could be used as potential biomarkers for CRC diagnosis.</p> </abstract>


Author(s):  
Rashid Saif ◽  
Tania Mahmood ◽  
Aniqa Ejaz ◽  
Saeeda Zia

The Pashmina and Barbari are two famous goat breeds found in the wide areas of the Indo-Pak region. Pashmina is famous for its long hair-fiber (Cashmere) production while Barbari is not-selected for this trait. So, the mRNA expression profiling in the skin samples of both breeds would be an attractive and judicious approach for detecting putative genes involved in this valued trait. Here, we performed differential gene expression analysis on publicly available RNA-Seq data from both breeds. Out of 44,617,994 filtered reads of Pashmina and 55,995,999 of Barbari which are 76.48% and 73.69% mapped to the ARS1 reference transcriptome assembly respectively. A pairwise comparison of both breeds resulted in 47,159 normalized expressed transcripts while 8,414 transcripts are differentially expressed above the significant threshold. Among these, 4,788 are upregulated in Pashmina while 3,626 transcripts are upregulated in Barbari. Fifty-nine transcripts harbor 57 genes including 32 LOC genes and 24 are annotated genes which were selected on the basis of TMM counts &gt; 500. Genes with ectopic expressions other than uncharacterized and LOC symbol genes are Keratins (KRT) and Keratin Associated Proteins (KRTAPs), CystatinA&amp;6, TCHH, SPRR4, PPIA, SLC25A4, S100A11, DMKN, LOR, ANXA2, PRR9 and SFN. All of these genes are likely to be involved in keratinocyte differentiation, sulfur matrix proteins, dermal papilla cells, hair follicles proliferation, hair curvature, wool fiber diameter, hair transition, hair shaft differentiation and its keratinization. These differentially expressed reported genes are critically valuable for enhancing the quality and quantity of the pashmina fiber and overall breed improvement. This study will also provide important information on hair follicle differentiation for further enrichment analyses and introducing this valued trait to other goat breeds as well.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fang Yang ◽  
Yang Chen ◽  
Zhiqiang Xue ◽  
Yaogai Lv ◽  
Li Shen ◽  
...  

Objective. Long noncoding RNA (lncRNA) and circular RNA (circRNA) are receiving increasing attention in diabetes research. However, there are still many unknown lncRNAs and circRNAs that need further study. The aim of this study is to identify new lncRNAs and circRNAs and their potential biological functions in type 2 diabetes mellitus (T2DM). Methods. RNA sequencing and differential expression analysis were used to identify the noncoding RNAs (ncRNAs) and mRNAs that were expressed abnormally between the T2DM and control groups. The competitive endogenous RNA (ceRNA) regulatory network revealed the mechanism of lncRNA and circRNA coregulating gene expression. The biological functions of lncRNA and circRNA were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The candidate hub mRNAs were selected by the protein-protein interaction (PPI) network and validated by using the Gene Expression Omnibus (GEO) database. Results. Differential expression analysis results showed that 441 lncRNAs (366 upregulated and 75 downregulated), 683 circRNAs (354 upregulated and 329 downregulated), 93 miRNAs (63 upregulated and 30 downregulated), and 2923 mRNAs (1156 upregulated and 1779 downregulated) were identified as remarkably differentially expressed in the T2DM group. The ceRNA regulatory network showed that a single lncRNA and circRNA can be associated with multiple miRNAs, and then, they coregulate more mRNAs. Functional analysis showed that differentially expressed lncRNA (DElncRNA) and differentially expressed circRNA (DEcircRNA) may play important roles in the mTOR signaling pathway, lysosomal pathway, apoptosis pathway, and tuberculosis pathway. In addition, PIK3R5, AKT2, and CLTA were hub mRNAs screened out that were enriched in an important pathway by establishing the PPI network. Conclusions. This study is the first study to explore the molecular mechanisms of lncRNA and circRNA in T2DM through the ceRNA network cofounded by lncRNA and circRNA. Our study provides a novel insight into the T2DM from the ceRNA regulatory network.


2020 ◽  
Author(s):  
Zhongxiao Lu ◽  
Jian Wu ◽  
Yi-ming Li ◽  
Wen-xiang Chen ◽  
Qiang-feng Yu ◽  
...  

Abstract AimLiver cancer is a common malignant tumor whose molecular pathogenesis remains unclear. This study attempts to identify key genes related to liver cancer by bioinformatics analysis and analyze their biological functions.MethodsThe gene expression data of the microarray were downloaded from the Gene Expression Omnibus(GEO) database. The differentially expressed genes (DEGs) were then identified by the R software package “limma” and were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using DAVID. The protein-protein interaction (PPI) network was constructed via String, and the results were visualized in Cytoscape. Modules and hub genes were identified using the MCODE plugin, while the expression of hub genes and its effects were analyzed by GEPIA2. Additionally, the co-expression of the hub gene was explored in String, while the GO results were visualized using the R software. Finally, the targets of the hub gene were predicted through an online website. ResultsIn total, 43 differentially expressed genes were obtained. The GO analysis was mainly concentrated in the redox process and nuclear mitosis, while the KEGG pathway analysis was mainly enriched in retinol metabolism and the cell cycle. Moreover, four hub genes were identified in the PPI network, however, the Kaplan-Meier risk curve showed that only ECT2 and FCN3 affected the survival of liver cancer. ECT2 was found to be high expressed in liver cancer, carrying out signal transduction and targeting hsa-miR-27a-3p. FCN3 was observed to be lowly expressed in liver cancer and related to the immune response, targeting hsa-miR132-5p.ConclusionThe obtained findings suggest that two genes are significantly related to the prognosis of liver cancer, and the analysis of their biological function provided novel insight into the pathogenesis of liver cancer. Furthermore, FCN3 may serve as a promising biomarker for patients with liver cancer.


2021 ◽  
Author(s):  
Cailin xue ◽  
Peng gao ◽  
Xudong zhang ◽  
Xiaohan cui ◽  
Lei jin ◽  
...  

Abstract Background: Abnormal methylation of DNA sequences plays an important role in the development and progression of pancreatic cancer (PC). The purpose of this study was to identify abnormal methylation genes and related signaling pathways in PC by comprehensive bioinformatic analysis of three datasets in the Gene Expression Omnibus (GEO). Methods: Datasets of gene expression microarrays (GSE91035, GSE15471) and gene methylation microarrays (GSE37480) were downloaded from the GEO database. Aberrantly methylated-differentially expressed genes (DEGs) were analysis by GEO2R software. GO and KEGG enrichment analyses of selected genes were performed using DAVID database. A protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Core module analysis was performed by Mcode in Cytoscape. Hub genes were obtained by CytoHubba app. in Cytoscape software. Results: A total of 267 hypomethylation-high expression genes, which were enriched in biological processes of cell adhesion, biological adhesion and regulation of signaling were obtained. KEGG pathway enrichment showed ECM-receptor interaction, Focal adhesion and PI3K-Akt signaling pathway. The top 5 hub genes of PPI network were EZH2, CCNA2, CDC20, KIF11, UBE2C. As for hypermethylation-low expression genes, 202 genes were identified, which were enriched in biological processes of cellular amino acid biosynthesis process and positive regulation of PI3K activity, etc. The pathways enriched were the pancreatic secretion and biosynthesis of amino acids pathways, etc. The five significant hub genes were DLG3, GPT2, PLCB1, CXCL12 and GNG7. In addition, five genes, including CCNA2, KIF11, UBE2C, PLCB1 and GNG7, significantly associated with patient's prognosis were also identified. Conclusion: Novel genes with abnormal expression were identified, which will help us further understand the molecular mechanism and related signaling pathways of PC, and these aberrant genes could possibly serve as biomarkers for precise diagnosis and treatment of PC.


2020 ◽  
Author(s):  
Cheng Zhang ◽  
Di Meng ◽  
Songjie Chao ◽  
Chunlin Ge

Abstract BackgroundAbnormal hypomethylation of oncogenes and hypermethylation of tumor suppressor genes play important roles in human tumorigenesis and cancer progression, including those of rectal cancer (RC). However, conjoint analysis of RC involving both gene expression and methylation profiling datasets remains rare. This study aimed to identify methylation-regulated differentially expressed genes (MeDEGs) and to evaluate their prognostic value in RC through bioinformatics analysis.MethodsGene expression (GSE20842 and GSE68204) and gene methylation (GSE75546) profiling datasets were obtained from the Gene Expression Omnibus database. GEO2R was adopted to identify differentially expressed genes (DEGs) and differentially methylated genes (DMGs). MeDEGs were obtained by overlapping the DEGs and DMGs and then subjected to protein–protein interaction (PPI) network analysis using STRING. Modules and hub genes within the network were identified using MCODE and CytoHubba, respectively. Prognostic MeDEGs were selected by univariate Cox regression. Finally, our findings were validated based on The Cancer Genome Atlas (TCGA) database.ResultsIn total, 243 upregulated-hypomethylated and 51 downregulated-hypermethylated genes were identified as MeDEGs. A PPI network of MeDEGs was constructed with 290 nodes and 578 edges. Three modules and three hub genes—COL3A1, FPR1, and PLK1—within the network were identified. Three MeDEGs—NFE2, COMP, and LAMA1—were found to be survival-related. Furthermore, the expression and methylation status of two hub genes (excluding FPR1) and the three prognostic MeDEGs were also significantly altered in TCGA and were consistent with our findings.ConclusionsWe identified novel MeDEGs and explored their relationship with survival in RC. Our methodology may provide an effective bioinformatics basis for further understanding of the methylation-mediated regulatory mechanisms in RC.


Sign in / Sign up

Export Citation Format

Share Document