scholarly journals FCN3 Is a Prognostic Biomarker Correlated with Immune Response in Liver Cancer

2020 ◽  
Author(s):  
Zhongxiao Lu ◽  
Jian Wu ◽  
Yi-ming Li ◽  
Wen-xiang Chen ◽  
Qiang-feng Yu ◽  
...  

Abstract AimLiver cancer is a common malignant tumor whose molecular pathogenesis remains unclear. This study attempts to identify key genes related to liver cancer by bioinformatics analysis and analyze their biological functions.MethodsThe gene expression data of the microarray were downloaded from the Gene Expression Omnibus(GEO) database. The differentially expressed genes (DEGs) were then identified by the R software package “limma” and were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using DAVID. The protein-protein interaction (PPI) network was constructed via String, and the results were visualized in Cytoscape. Modules and hub genes were identified using the MCODE plugin, while the expression of hub genes and its effects were analyzed by GEPIA2. Additionally, the co-expression of the hub gene was explored in String, while the GO results were visualized using the R software. Finally, the targets of the hub gene were predicted through an online website. ResultsIn total, 43 differentially expressed genes were obtained. The GO analysis was mainly concentrated in the redox process and nuclear mitosis, while the KEGG pathway analysis was mainly enriched in retinol metabolism and the cell cycle. Moreover, four hub genes were identified in the PPI network, however, the Kaplan-Meier risk curve showed that only ECT2 and FCN3 affected the survival of liver cancer. ECT2 was found to be high expressed in liver cancer, carrying out signal transduction and targeting hsa-miR-27a-3p. FCN3 was observed to be lowly expressed in liver cancer and related to the immune response, targeting hsa-miR132-5p.ConclusionThe obtained findings suggest that two genes are significantly related to the prognosis of liver cancer, and the analysis of their biological function provided novel insight into the pathogenesis of liver cancer. Furthermore, FCN3 may serve as a promising biomarker for patients with liver cancer.

2021 ◽  
Author(s):  
Churen Zhang ◽  
Ruoran Sun

Abstract Background. Among the diseases of oral mucosa, oral lichen planus (OLP) is characterized by chronic autoimmune/autoinflammation. However, the etiology and pathogenesis of OLP were still limited. The aim of this research was to identify the differentially expressed genes and their potentially interacted miRNAs in OLP to provide a possible explanation of the pathogenesis of OLP and therapeutic biomarkers.Methods. The OLP microarray dataset (GSE52130) was download from the Gene Expression Omnibus (GEO) database. R software was used to identify differentially expressed genes between the OLP samples and normal oral mucosa. Functional enrichment analysis of DEGs, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, were conducted. Protein–protein interaction (PPI) network analysis was performed in the STRING database. CytoHubba in the Cytoscape software was applied to determining the top 10 hub genes, whose relative miRNA was identified through RNA Interactome Database.Results. Overall, 627 DEGs was identified in OLP samples, including 351 highly expressed genes and 276 lowly expressed genes. GO analysis indicated that the epidermal differentiation was mostly enriched. For the KEGG pathway, the DEGs in OLP samples were mostly involved in Staphylococcus aureus infection, Estrogen signaling pathway, Serotonergic synapse and Histidine metabolism. Top 10 hub genes including LOR, LCE3D, LCE3E, LCE1B, LCE2B, SPRR2E, SPRR2G, LCE2A, RPTN and CDSN were identified from the PPI network. The miRNA (hsa-miR-98-5p) was regarded as the mostly possible miRNA involved in OLP.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ke-Ying Fang ◽  
Wen-Chao Cao ◽  
Tian-Ao Xie ◽  
Jie Lv ◽  
Jia-Xin Chen ◽  
...  

Abstract Background In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people’s health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein–protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. Results In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. Conclusions In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.


2021 ◽  
Author(s):  
Cailin xue ◽  
Peng gao ◽  
Xudong zhang ◽  
Xiaohan cui ◽  
Lei jin ◽  
...  

Abstract Background: Abnormal methylation of DNA sequences plays an important role in the development and progression of pancreatic cancer (PC). The purpose of this study was to identify abnormal methylation genes and related signaling pathways in PC by comprehensive bioinformatic analysis of three datasets in the Gene Expression Omnibus (GEO). Methods: Datasets of gene expression microarrays (GSE91035, GSE15471) and gene methylation microarrays (GSE37480) were downloaded from the GEO database. Aberrantly methylated-differentially expressed genes (DEGs) were analysis by GEO2R software. GO and KEGG enrichment analyses of selected genes were performed using DAVID database. A protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Core module analysis was performed by Mcode in Cytoscape. Hub genes were obtained by CytoHubba app. in Cytoscape software. Results: A total of 267 hypomethylation-high expression genes, which were enriched in biological processes of cell adhesion, biological adhesion and regulation of signaling were obtained. KEGG pathway enrichment showed ECM-receptor interaction, Focal adhesion and PI3K-Akt signaling pathway. The top 5 hub genes of PPI network were EZH2, CCNA2, CDC20, KIF11, UBE2C. As for hypermethylation-low expression genes, 202 genes were identified, which were enriched in biological processes of cellular amino acid biosynthesis process and positive regulation of PI3K activity, etc. The pathways enriched were the pancreatic secretion and biosynthesis of amino acids pathways, etc. The five significant hub genes were DLG3, GPT2, PLCB1, CXCL12 and GNG7. In addition, five genes, including CCNA2, KIF11, UBE2C, PLCB1 and GNG7, significantly associated with patient's prognosis were also identified. Conclusion: Novel genes with abnormal expression were identified, which will help us further understand the molecular mechanism and related signaling pathways of PC, and these aberrant genes could possibly serve as biomarkers for precise diagnosis and treatment of PC.


2020 ◽  
Author(s):  
Cheng Zhang ◽  
Di Meng ◽  
Songjie Chao ◽  
Chunlin Ge

Abstract BackgroundAbnormal hypomethylation of oncogenes and hypermethylation of tumor suppressor genes play important roles in human tumorigenesis and cancer progression, including those of rectal cancer (RC). However, conjoint analysis of RC involving both gene expression and methylation profiling datasets remains rare. This study aimed to identify methylation-regulated differentially expressed genes (MeDEGs) and to evaluate their prognostic value in RC through bioinformatics analysis.MethodsGene expression (GSE20842 and GSE68204) and gene methylation (GSE75546) profiling datasets were obtained from the Gene Expression Omnibus database. GEO2R was adopted to identify differentially expressed genes (DEGs) and differentially methylated genes (DMGs). MeDEGs were obtained by overlapping the DEGs and DMGs and then subjected to protein–protein interaction (PPI) network analysis using STRING. Modules and hub genes within the network were identified using MCODE and CytoHubba, respectively. Prognostic MeDEGs were selected by univariate Cox regression. Finally, our findings were validated based on The Cancer Genome Atlas (TCGA) database.ResultsIn total, 243 upregulated-hypomethylated and 51 downregulated-hypermethylated genes were identified as MeDEGs. A PPI network of MeDEGs was constructed with 290 nodes and 578 edges. Three modules and three hub genes—COL3A1, FPR1, and PLK1—within the network were identified. Three MeDEGs—NFE2, COMP, and LAMA1—were found to be survival-related. Furthermore, the expression and methylation status of two hub genes (excluding FPR1) and the three prognostic MeDEGs were also significantly altered in TCGA and were consistent with our findings.ConclusionsWe identified novel MeDEGs and explored their relationship with survival in RC. Our methodology may provide an effective bioinformatics basis for further understanding of the methylation-mediated regulatory mechanisms in RC.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6425 ◽  
Author(s):  
Yang Fang ◽  
Pingping Wang ◽  
Lin Xia ◽  
Suwen Bai ◽  
Yonggang Shen ◽  
...  

Background The elderly population is at risk of osteoarthritis (OA), a common, multifactorial, degenerative joint disease. Environmental, genetic, and epigenetic (such as DNA hydroxymethylation) factors may be involved in the etiology, development, and pathogenesis of OA. Here, comprehensive bioinformatic analyses were used to identify aberrantly hydroxymethylated differentially expressed genes and pathways in osteoarthritis to determine the underlying molecular mechanisms of osteoarthritis and susceptibility-related genes for osteoarthritis inheritance. Methods Gene expression microarray data, mRNA expression profile data, and a whole genome 5hmC dataset were obtained from the Gene Expression Omnibus repository. Differentially expressed genes with abnormal hydroxymethylation were identified by MATCH function. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the genes differentially expressed in OA were performed using Metascape and the KOBAS online tool, respectively. The protein–protein interaction network was built using STRING and visualized in Cytoscape, and the modular analysis of the network was performed using the Molecular Complex Detection app. Results In total, 104 hyperhydroxymethylated highly expressed genes and 14 hypohydroxymethylated genes with low expression were identified. Gene ontology analyses indicated that the biological functions of hyperhydroxymethylated highly expressed genes included skeletal system development, ossification, and bone development; KEGG pathway analysis showed enrichment in protein digestion and absorption, extracellular matrix–receptor interaction, and focal adhesion. The top 10 hub genes in the protein–protein interaction network were COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL6A1, COL8A1, COL11A1, and COL24A1. All the aforementioned results are consistent with changes observed in OA. Conclusion After comprehensive bioinformatics analysis, we found aberrantly hydroxymethylated differentially expressed genes and pathways in OA. The top 10 hub genes may be useful hydroxymethylation analysis biomarkers to provide more accurate OA diagnoses and target genes for treatment of OA.


2021 ◽  
Author(s):  
Churen Zhang ◽  
Ruoran Sun

Abstract Background Oral lichen planus (OLP) was a common oral mucosal disease. However, the etiology and pathogenesis of OLP were still limited. This research was designed to identify the differentially expressed genes and relative miRNAs in OLP. Methods and Results The OLP microarray dataset (GSE52130) was download from the Gene Expression Omnibus (GEO) database. R software was used to identify differentially expressed genes between the OLP samples and normal oral mucosa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway conducted. Protein–protein interaction (PPI) network analysis was performed in the STRING database. CytoHubba in the Cytoscape software was applied to determining the top 10 hub genes, whose relative miRNA was identified through RNA Interactome Database. Overall, 627 DEGs was identified in OLP samples, including 351 highly expressed genes and 276 lowly expressed genes. GO analysis indicated that the epidermal differentiation was mostly enriched. For the KEGG pathway, the DEGs in OLP samples were mostly involved in Staphylococcus aureus infection. Top 10 hub genes were identified from the PPI network. The miRNA (hsa-miR-98-5p) was regarded as the mostly possible miRNA involved in OLP. Conclusions The epidermal differentiation complex and functional miRNAs (hsa-miR-98-5p, hsa-let-7e-5p, hsa-let-7f-5p) were potential biomarkers of OLP


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shuaiqun Wang ◽  
Xiaoling Xu ◽  
Wei Kong

Lung adenocarcinoma (LUAD) is one of the malignant lung tumors. However, its pathology has not been fully understood. The purpose of this study is to identify the hub genes associated with LUAD by bioinformatics methods. Three gene expression datasets including GSE116959, GSE74706, and GSE85841 downloaded from the Gene Expression Omnibus (GEO) database were used in this study. The differentially expressed genes (DEGs) related to LUAD were screened by using the limma package. Gene Ontology (GO) and KEGG analysis of DEGs were carried out through the DAVID website. The protein-protein interaction (PPI) of differentially expressed genes was drawn by the STRING website, and the results were imported into Cytoscape for visualization. Then, the PPI network was analyzed by using MCODE, and the modules with a score greater than 5 were found by using cytoHubba. Finally, the GEPIA database and UALCAN database were used to verify and analyze the survival of hub genes. We identified 67 upregulated genes and 277 downregulated genes from three LUAD datasets. The results of GO analysis showed that the downregulated genes were significantly enriched in matrix adhesion and angiogenesis and upregulated differential genes were significantly enriched in cell adhesion and vascular development. KEGG pathway analysis showed that the differential genes of LUAD were significantly enriched in viral carcinogenesis and adhesion spots. The PPI network of differentially expressed genes consists of 269 nodes and 625 interactions. In addition, three modules with scores greater than 5 and seven hub genes, namely, MCM4, BIRC5, CDC20, CDC25C, FOXM1, GTSE1, and RFC4, playing an important role in the PPI network were screened out. In this study, we obtained the hub genes and pathways related to LUAD, revealing the molecular mechanism and pathogenesis of LUAD, which is helpful for the early detection of LUAD and provides a new idea for the treatment of LUAD.


Author(s):  
Xitong Yang ◽  
Pengyu Wang ◽  
Shanquan Yan ◽  
Guangming Wang

AbstractStroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein–protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine − cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baojie Wu ◽  
Shuyi Xi

Abstract Background This study aimed to explore and identify key genes and signaling pathways that contribute to the progression of cervical cancer to improve prognosis. Methods Three gene expression profiles (GSE63514, GSE64217 and GSE138080) were screened and downloaded from the Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) were screened using the GEO2R and Venn diagram tools. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Gene set enrichment analysis (GSEA) was performed to analyze the three gene expression profiles. Moreover, a protein–protein interaction (PPI) network of the DEGs was constructed, and functional enrichment analysis was performed. On this basis, hub genes from critical PPI subnetworks were explored with Cytoscape software. The expression of these genes in tumors was verified, and survival analysis of potential prognostic genes from critical subnetworks was conducted. Functional annotation, multiple gene comparison and dimensionality reduction in candidate genes indicated the clinical significance of potential targets. Results A total of 476 DEGs were screened: 253 upregulated genes and 223 downregulated genes. DEGs were enriched in 22 biological processes, 16 cellular components and 9 molecular functions in precancerous lesions and cervical cancer. DEGs were mainly enriched in 10 KEGG pathways. Through intersection analysis and data mining, 3 key KEGG pathways and related core genes were revealed by GSEA. Moreover, a PPI network of 476 DEGs was constructed, hub genes from 12 critical subnetworks were explored, and a total of 14 potential molecular targets were obtained. Conclusions These findings promote the understanding of the molecular mechanism of and clinically related molecular targets for cervical cancer.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Haoming Li ◽  
Linqing Zou ◽  
Jinhong Shi ◽  
Xiao Han

Abstract Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD.


Sign in / Sign up

Export Citation Format

Share Document