scholarly journals Finite Element Analysis on Acoustic and Mechanical Performance of Flexible Perforated Honeycomb-Corrugation Hybrid Sandwich Panel

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaming Hu ◽  
Junyi Wang ◽  
Yu Xie ◽  
Chenzhi Shi ◽  
Yun Chen

Since proposed, the perforated honeycomb-corrugation sandwich panel has attracted a lot of attention due to its superior broadband sound absorption at low frequencies and excellent mechanical stiffness/strength. However, most existing studies have assumed a structure made of high-strength materials and studied its performance based on the ideal rigid-wall model with little consideration for acoustic-structure interaction, thereby neglecting the structural vibrations caused by the material’s elasticity. In this paper, we developed a more realistic model considering the solid structural dynamics using the finite element method (FEM) and by applying aluminum and rubber as the structural material. The enhancement of the low-frequency performance and inhibition of broadband absorption coexisted in low-strength rubbers, implying a compromise in the selection of Young's modulus to balance these two influences. Further analysis on thermal-viscous dissipation, mechanical energy, and average structural stress indicated that the structure should work right below the resonant frequency for optimization. Based on these findings, we designed a novel aluminum-rubber composite structure possessing enhanced low-frequency absorption, high resistance to shear load, normal compression, and thermal expansion. Our research is expected to shed some light on noise control and the design of multifunctional acoustic metamaterials.

2020 ◽  
Vol 982 ◽  
pp. 39-50
Author(s):  
Ying Jie Fu ◽  
Xiao Ming Wang ◽  
Yu Lin Mei

Traditional acoustic absorbing materials are not effective for low-frequency engineering applications, but on the basis of the locally resonant principle, acoustic metamaterials can utilize the resonance of vibrators to dissipate acoustic energy and realize the subwavelength design of acoustic absorbers, therefore the acoustic metamaterials have great potential applications for noise reduction at low frequencies. This paper firstly employs the Bloch theory to investigate the effects of the parameters of the unit cell of the embedded membrane-and-mass metamaterials on the dispersion characteristics of the metamaterials, and the band gap is verified by the full wave finite element analysis. And then, a model of acoustic metamaterials is constructed by embeding an array of membrane-and-masses into a channel structure filled with acoustic materials. Next the transient frequency response analysis is performed to simulate the wave propagation in the model, the results show that the acoustic metamaterials can absorb the sound through the local resonance of the membrane-and-mass vibrators. Finally, an acoustic metamaterial maze structure is designed and analyzed, in the structure the membrane-and-mass array is embedded and the masses varies periodically. The research illustrates that the acoustic metamaterials with membrane-and-mass unit cells have excellent performances on the sound absorption at low frequency.


2020 ◽  
Vol 7 ◽  
Author(s):  
Audrey A. Watkins ◽  
Osama R. Bilal

Controlling infrasound signals is crucial to many processes ranging from predicting atmospheric events and seismic activities to sensing nuclear detonations. These waves can be manipulated through phononic crystals and acoustic metamaterials. However, at such ultra-low frequencies, the size (usually on the order of meters) and the mass (usually on the order of many kilograms) of these materials can hinder its potential applications in the infrasonic domain. Here, we utilize tunable lattices of repelling magnets to guide and sort infrasound waves into different channels based on their frequencies. We construct our lattices by confining meta-atoms (free-floating macroscopic disks with embedded magnets) within a magnetic boundary. By changing the confining boundary, we control the meta-atoms’ spacing and therefore the intensity of their coupling potentials and wave propagation characteristics. As a demonstration of principle, we present the first experimental realization of an infrasound phonon demultiplexer (i.e., guiding ultra-low frequency waves into different channels based on their frequencies). The realized platform can be utilized to manipulate ultra-low frequency waves, within a relatively small volume, while utilizing negligible mass. In addition, the self-assembly nature of the meta-atoms can be key in creating re-programmable materials with exceptional nonlinear properties.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


2018 ◽  
Vol 10 (05) ◽  
pp. 1850054 ◽  
Author(s):  
Akintoye Olumide Oyelade ◽  
Yi Chen ◽  
Ruojun Zhang ◽  
Gengkai Hu

Transmission loss of acoustic metamaterials (AM) made of double thin plates with magnetic (negative) stiffness was analyzed using theory, finite element analysis and experimental techniques. The theoretical formulation was done using a rectangular duct below the first cut off frequency, the model is then validated against finite element method and experiment. Two cubic magnets were used, their interaction force and the resulted magnetic stiffness were calculated. The sound transmission loss (STL) of the structure is calculated for plane wave condition, the addition of magnetic mass shifts STL peaks to the lower frequency compared to a structure without mass. The slight increase in STL for small negative stiffness in experiment is not enough to cancel the effect of air compressibility. However, a significant enhancement could be expected if negative stiffness can be made large enough in the double thin plates. The developed AM can be employed as a prospective sound engineering control at low frequency.


2021 ◽  
Vol 263 (6) ◽  
pp. 648-652
Author(s):  
Tuo Xing ◽  
Xianhui Li ◽  
Xiaoling Gai ◽  
Zenong Cai ◽  
Xiwen Guan

The monostable acoustic metamaterial is realized by placing a flexible panel with a magnetic proof mass in a symmetric magnetic field. The theoretical model of monostable metamaterials has been proposed. The method of finite element simulation is used to verify the theoretical model. The magnetic force of the symmetrical magnetic field is simplified as the relationship between force and displacement, acting on the mass. The simulation results show that as the external magnetic force increases, the peak sound absorption shifts to low frequencies. The theoretical and finite element simulation results are in good agreement.


Author(s):  
Sijia Wang ◽  
Tianlai Yu

Because of the low height of the prestressed short rib T-beam bridge and the poor torsion resistance of the main beam, the positive moment in the middle span of the bridge deck will increase correspondingly compared with the normal rib beam bridge. At present, there is little research on the calculation method of the bridge deck of the prestressed short rib T-beam bridge. In this paper, the space finite element method and the continuous one-way slab method are used to calculate the forces on the bridge deck, based on the space finite element method, a finite element elastic supported continuous beam method is proposed to calculate the forces on the bridge deck. By comparing the calculation results of the three methods with the test results, the reasonable calculation method of the bridge deck is studied. The results show that the spatial finite element analysis method can simulate the mechanical performance of the deck of the bridge of the prestressed short rib T-beam bridge well, the stress calculation results are consistent with the test results, and the calculation accuracy is high, which can be used in the actual engineering design; The finite element analysis method of elastic support continuous beam can also simulate the mechanical performance of the deck of the bridge of the prestressed short rib T-beam bridge. The concept of the method is clear, the calculation is convenient, and it is more suitable for the application of engineering design; The calculation results of the continuous one-way slab method are too large to be safe for design.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3444
Author(s):  
Avram Manea ◽  
Grigore Baciut ◽  
Mihaela Baciut ◽  
Dumitru Pop ◽  
Dan Sorin Comsa ◽  
...  

Background: Once inserted and osseointegrated, dental implants become ankylosed, which makes them immobile with respect to the alveolar bone. The present paper describes the development of a new and original implant design which replicates the 3D physiological mobility of natural teeth. The first phase of the test followed the resistance of the implant to mechanical stress as well as the behavior of the surrounding bone. Modifications to the design were made after the first set of results. In the second stage, mechanical tests in conjunction with finite element analysis were performed to test the improved implant design. Methods: In order to test the new concept, 6 titanium alloy (Ti6Al4V) implants were produced (milling). The implants were fitted into the dynamic testing device. The initial mobility was measured for each implant as well as their mobility after several test cycles. In the second stage, 10 implants with the modified design were produced. The testing protocol included mechanical testing and finite element analysis. Results: The initial testing protocol was applied almost entirely successfully. Premature fracturing of some implants and fitting blocks occurred and the testing protocol was readjusted. The issues in the initial test helped design the final testing protocol and the new implants with improved mechanical performance. Conclusion: The new prototype proved the efficiency of the concept. The initial tests pointed out the need for design improvement and the following tests validated the concept.


2014 ◽  
Vol 635-637 ◽  
pp. 507-510
Author(s):  
Dong Peng Du ◽  
Zhe Wu ◽  
Juan Xing ◽  
Xiao Yan Gong ◽  
Xiang Wen Miu ◽  
...  

When strong exercise on human being body, respectively, under knees 30°, 60°,90°, using PRO/E5.0 software to establish the transverse patella fracture and anti-shearing force patella claws 3D models, then the two structure models were assembled and imported into ABAQUS10.1 software to establish the finite element model of patellar fracture fixed within patella claw, and analyzed the mechanical performance in perforce finite element model. Under the same boundary conditions, the maximum displacement and deformation of each components were different at every flexion angle. Compared with anti-shearing force patella claw and AO tensile force girdle, the patella claw with stronger resistance to tension and anti-shearing force was more stable. Deformation and displacement of patella claw in accordance with biomechanical research result that is needed by clinical. Its stability will satisfy clinical requirements for functional exercise.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yufan Tang ◽  
Shuwei Ren ◽  
Han Meng ◽  
Fengxian Xin ◽  
Lixi Huang ◽  
...  

Abstract A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.


Sign in / Sign up

Export Citation Format

Share Document