scholarly journals Changes in Key Mitochondrial Lipids Accompany Mitochondrial Dysfunction and Oxidative Stress in NAFLD

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Manon Durand ◽  
Marine Coué ◽  
Mikaël Croyal ◽  
Thomas Moyon ◽  
Angela Tesse ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the “nonmitochondrial” hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the “nonmitochondrial” lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jorge Gamboa ◽  
Alp Ikizler ◽  
Chang Yu ◽  
Bruce Damon ◽  
Nancy Brown ◽  
...  

Abstract Background and Aims Patients with chronic kidney disease (CKD) suffer from frailty and sarcopenia. Skeletal muscle mitochondria are important for physical function and could be a target to prevent frailty and sarcopenia. Method We tested the hypothesis that mitochondrial function worsens with the progression of CKD. We evaluated the interaction between mitochondrial function and co-existing comorbidities such as impaired physical performance, intermuscular adipose tissue (IMAT) infiltration, inflammation, and oxidative stress. We evaluated in-vivo thigh mitochondrial function using 31-phosphorus magnetic resonance spectroscopy to obtain the phosphocreatine (PCr) recovery constant, a measure of mitochondrial function. We measured physical performance using the six-minute walk test, IMAT infiltration and markers of inflammation in plasma. Results Sixty-three participants were studied including controls (n=21), patients with CKD not on maintenance hemodialysis (MHD; n=20), and patients on MHD (n=22). We found a prolonged PCr recovery constant in patients on MHD (53.3 (43.4, 70.1) seconds) and with CKD not on MHD (46.3 (40,0, 49.9) seconds) compared to controls (34.2 (28.8, 43.7) seconds) (p<0.001 between groups), Figure 1A-C. Mitochondrial dysfunction was associated with poor physical performance, greater IMAT, and increased markers of inflammation Figure 2A-C. Conclusion Mitochondrial function worsens with the progression of CKD and correlates with physical function, IMAT, inflammation, and oxidative stress. These data suggest that therapeutic approaches targeted at mitochondrial dysfunction and dynamics could prevent or treat frailty and sarcopenia in patients CKD.


2015 ◽  
Vol 128 (9) ◽  
pp. 527-535 ◽  
Author(s):  
Andrew S. Brem ◽  
Rujun Gong

Numerous studies have established a role for mineralocorticoids in the development of renal fibrosis. Originally, the research focus for mineralocorticoid-induced fibrosis was on the collecting duct, where ‘classical’ mineralocorticoid receptors (MRs) involved with electrolyte transport are present. Epithelial cells in this segment can, under selected circumstances, also respond to MR activation by initiating pro-fibrotic pathways. More recently, ‘non-classical’ MRs have been described in kidney cells not associated with electrolyte transport, including mesangial cells and podocytes within the glomerulus. Activation of MRs in these cells appears to lead to glomerular sclerosis. Mechanistically, aldosterone induces excess production of reactive oxygen species (ROS) and oxidative stress in glomerular cells through activation of NADPH oxidase. In mesangial cells, aldosterone also has pro-apoptotic, mitogenic and pro-fibrogenic effects, all of which potentially promote active remodelling and expansion of the mesangium. Although mitochondrial dysfunction seems to mediate the aldosterone-induced mesangial apoptosis, the ROS dependent epithelial growth factor receptor (EGFR) transactivation is probably responsible for aldosterone-induced mesangial mitosis and proliferation. In podocytes, mitochondrial dysfunction elicited by oxidative stress is an early event associated with aldosterone-induced podocyte injury. Both the p38 MAPK (p38 mitogen-activated protein kinase) signalling and the redox-sensitive glycogen synthase kinase (GSK)3β pathways are centrally implicated in aldosterone-induced podocyte death. Aldosterone-induced GSK3β over-activity could potentially cause hyperphosphorylation and over-activation of putative GSK3β substrates, including structural components of the mitochondrial permeability transition (MPT) pore, all of which lead to cell injury and death. Clinically, proteinuria significantly decreases when aldosterone inhibitors are included in the treatment of many glomerular diseases further supporting the view that mineralocorticoids are important players in glomerular pathology.


2016 ◽  
Vol 22 (18) ◽  
pp. 2650-2656 ◽  
Author(s):  
Noelia Diaz-Morales ◽  
Susana Rovira-Llopis ◽  
Irene Escribano-Lopez ◽  
Celia Bañuls ◽  
Sandra Lopez-Domenech ◽  
...  

2018 ◽  
Vol 17 (9) ◽  
pp. 689-695 ◽  
Author(s):  
Nidhi Khatri ◽  
Manisha Thakur ◽  
Vikas Pareek ◽  
Sandeep Kumar ◽  
Sunil Sharma ◽  
...  

Background & Objective: Traumatic Brain Injury (TBI) is one of the major causes of mortality and morbidity worldwide. It represents mild, moderate and severe effects of physical assault to brain which may cause sequential, primary or secondary ramifications. Primary injury can be due to the first physical hit, blow or jolt to one of the brain compartments. The primary injury is then followed by secondary injury which leads to biochemical, cellular, and physiological changes like blood brain barrier disruption, inflammation, excitotoxicity, necrosis, apoptosis, mitochondrial dysfunction and generation of oxidative stress. Apart from this, there is also an immediate increase in glutamate at the synapses following severe TBI. Excessive glutamate at synapses in turn activates corresponding NMDA and AMPA receptors that facilitate excessive calcium influx into the neuronal cells. This leads to the generation of oxidative stress which further leads to mitochondrial dysfunction, lipid peroxidation and oxidation of proteins and DNA. As a consequence, neuronal cell death takes place and ultimately people start facing some serious disabilies. Conclusion: In the present review we provide extensive overview of the role of reactive oxygen species (ROS)-induced oxidative stress and its fatal effects on brain after TBI.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239625
Author(s):  
Prasanna M. Chandramouleeswaran ◽  
Manti Guha ◽  
Masataka Shimonosono ◽  
Kelly A. Whelan ◽  
Hisatsugu Maekawa ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Jing-Hua Wang ◽  
Sung-Bae Lee ◽  
Dong-Soo Lee ◽  
Chang-Gue Son

Oxidative stress plays a pivotal role in the progression of chronic hepatitis B; however, it is unclear whether the status of blood oxidative stress and antioxidant components differs depending on the degree of hepatic fibrosis. To explore the relationship between oxidative stress/antioxidant capacity and the extent of hepatic fibrosis, fifty-four subjects with liver fibrosis (5.5 ≤ liver stiffness measurement (LSM) score ≤ 16.0 kPa) by chronic hepatitis B virus (HBV) were analyzed. From the analysis of eight kinds of serum oxidative stress/antioxidant profiles and liver fibrosis degrees, the level of total antioxidant capacity (TAC) reflected a negative correlation with the severity of hepatic fibrosis (Pearson correlation, r = −0.35, p = 0.01). Moreover, TAC showed higher sensitivity (73.91%) than the aspartate transaminase (AST) to platelet ratio index (APRI, 56.52%) in the receiver operating characteristic (ROC) curves. Interestingly, the TAC level finely reflected the fibrosis degree in inactive carriers (HBV DNA < 2000 IU/mL), while the APRI did in active carriers (HBV DNA > 2000 IU/mL). In conclusion, TAC is a promising biomarker for evaluating the progression of liver fibrosis in patients with HBV, and this finding may indicate the involvement of TAC-composing factors in the pathogenesis of hepatic fibrosis in chronic HBV carriers.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Helena Beatriz Ferreira ◽  
Tânia Melo ◽  
Artur Paiva ◽  
Maria do Rosário Domingues

Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document