scholarly journals Value of Ultrasonic Image Features in Diagnosis of Perinatal Outcomes of Severe Preeclampsia on account of Deep Learning Algorithm

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Qiang Wang ◽  
Dong Liu ◽  
Guangheng Liu

This study is aimed at discussing the value of ultrasonic image features in diagnosis of perinatal outcomes of severe preeclampsia on account of deep learning algorithm. 140 pregnant women singleton with severe preeclampsia were selected as the observation group. At the same time, 140 normal singleton pregnant women were selected as the control group. The hemodynamic indexes were detected by color Doppler ultrasound. The CNN algorithm was used to classify ultrasound images of two groups of pregnant women. The differential scanning calorimetry (DSC), mean pixel accuracy (MPA), and mean intersection of union (MIOU) values of CNN algorithm were 0.9410, 0.9228, and 0.8968, respectively. Accuracy, precision, recall, and F 1 -score were 93.44%, 95.13%, 95.09%, and 94.87%, respectively. The differences were statistically significant ( P < 0.05 ). Compared with the normal control group, the umbilical artery (UA), uterine artery-systolic/diastolic (UTA-S/D), uterine artery (UTA), and digital video (DV) of pregnant women in the observation group were remarkably increased; the minimum alveolar effective concentration (MCA) of the observation group was obviously lower than the MCA of the control group, and the differences between groups were statistically valid ( P < 0.05 ). Logistic regression analysis showed that UA-S/D, UA-resistance index (UA-RI), UTA-S/D, UTA-pulsatility index (UTA-PI), DV-peak velocity index for veins (DV-PVIV), and MCA-S/D were independent risk factors for the outcome of perinatal children with severe preeclampsia. In the perinatal management of severe epilepsy, the combination of the above blood flow indexes to select the appropriate delivery time had positive significance to improve the pregnancy outcome and reduce the perinatal mortality.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lifang Sun ◽  
Xi Hu ◽  
Yutao Liu ◽  
Hengyu Cai

In order to explore the effect of convolutional neural network (CNN) algorithm based on deep learning on magnetic resonance imaging (MRI) images of brain tumor patients and evaluate the practical value of MRI image features based on deep learning algorithm in the clinical diagnosis and nursing of malignant tumors, in this study, a brain tumor MRI image model based on the CNN algorithm was constructed, and 80 patients with brain tumors were selected as the research objects. They were divided into an experimental group (CNN algorithm) and a control group (traditional algorithm). The patients were nursed in the whole process. The macroscopic characteristics and imaging index of the MRI image and anxiety of patients in two groups were compared and analyzed. In addition, the image quality after nursing was checked. The results of the study revealed that the MRI characteristics of brain tumors based on CNN algorithm were clearer and more accurate in the fluid-attenuated inversion recovery (FLAIR), MRI T1, T1c, and T2; in terms of accuracy, sensitivity, and specificity, the mean value was 0.83, 0.84, and 0.83, which had obvious advantages compared with the traditional algorithm ( P < 0.05 ). The patients in the nursing group showed lower depression scores and better MRI images in contrast to the control group ( P < 0.05 ). Therefore, the deep learning algorithm can further accurately analyze the MRI image characteristics of brain tumor patients on the basis of conventional algorithms, showing high sensitivity and specificity, which improved the application value of MRI image characteristics in the diagnosis of malignant tumors. In addition, effective nursing for patients undergoing analysis and diagnosis on brain tumor MRI image characteristics can alleviate the patient’s anxiety and ensure that high-quality MRI images were obtained after the examination.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yiwen Shu ◽  
Xiwen Wu

Objective. This study was to explore the diagnostic effect of the coronary angiography (CAG) based on the fully convolutional neural network (FCNN) algorithm for patients with coronary heart disease (CHD) and suspected (not diagnosed) myocardial ischemia. Methods. In this study, 150 patients with undiagnosed CHD with myocardial ischemia in hospital were selected as the research objects. They were divided into an observation group and a control group by random number method. The patients in observation group were examined with CAG with the assistance of convolutional neural network (CNN) algorithm, while patients in the control group received conventional CAG. Results. The Dice coefficient of the segmentation effect evaluation index was 0.89, which showed that the image processing effect of the algorithm was good. There was no statistical difference in positive rates of single/double-vessel lesions between the two groups ( P > 0.05 ), and the positive rates of multivessel lesions and total lesions in the observation group were higher than those in the control group, showing statistically obvious difference ( P < 0.05 ). The examination sensitivity, specificity, accuracy, and Kappa value of the observation group were −90.9%, −60%, −82.7%, and −0.72, which were all higher in contrast to those of the control group. The proportion of positive myocardial ischemia and coronary artery stenosis (CAS) (82%) was higher than other cases (18%), and the comparison was statistically significant ( P < 0.05 ). Conclusion. CAG based on the deep learning algorithm showed a good detection effect and can better display the coronary lesions and reflect the good development prospects of deep learning technology in medical imaging.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinyou Chen ◽  
Yue Gao

Objective. The role of deep learning-based echocardiography in the diagnosis and evaluation of the effects of routine anti-heart-failure Western medicines was investigated in elderly patients with acute left heart failure (ALHF). Methods. A total of 80 elderly patients with ALHF admitted to Affiliated Hangzhou First People’s Hospital from August 2017 to February 2019 were selected as the research objects, and they were divided randomly into a control group and an observation group, with 40 cases in each group. Then, a deep convolutional neural network (DCNN) algorithm model was established, and image preprocessing was carried out. The binarized threshold segmentation was used for denoising, and the image was for illumination processing to balance the overall brightness of the image and increase the usable data of the model, so as to reduce the interference of subsequent feature extraction. Finally, the detailed module of deep convolutional layer network algorithm was realized. Besides, the patients from the control group were given routine echocardiography, and the observation group underwent echocardiography based on deep learning algorithm. Moreover, the hospitalization status of patients from the two groups was observed and recorded, including mortality rate, rehospitalization rate, average length of hospitalization, and hospitalization expenses. The diagnostic accuracy of the two examination methods was compared, and the electrocardiogram (ECG) and echocardiographic parameters as well as patients’ quality of life were recorded in both groups at the basic state and 5 months after drug treatment. Results. After comparison, the rehospitalization rate and mortality rate of the observation group were lower than the rates of the control group, but the diagnostic accuracy was higher than that of the control group. However, the difference between the two groups of patients was not statistically marked ( P > 0.05 ). The length and expenses of hospitalization of the observation group were both less than those of the control group. The specificity, sensitivity, and accuracy of the examination methods in the observation group were higher than those of the control group, and the differences were statistically marked ( P < 0.05 ). There was a statistically great difference between the interventricular delay (IVD) of the echocardiographic parameters of patients from the two groups at the basic state and the left ventricular electromechanical delay (LVEMD) parameter values after 5 months of treatment ( P < 0.05 ), but there was no significant difference in the other parameters. After treatment, the quality of life of patients from the two groups was improved, while the observation group was more marked than the control group ( P < 0.05 ). Conclusion. Echocardiography based on deep learning algorithm had high diagnostic accuracy and could reduce the possibility of cardiovascular events in patients with heart failure, so as to decrease the mortality rate and diagnosis and treatment costs. Moreover, it had an obvious diagnostic effect, which was conducive to the timely detection and treatment of clinical diseases.


2019 ◽  
Author(s):  
Soonil Kwon ◽  
Joonki Hong ◽  
Eue-Keun Choi ◽  
Byunghwan Lee ◽  
Changhyun Baik ◽  
...  

BACKGROUND Continuous photoplethysmography (PPG) monitoring with a wearable device may aid the early detection of atrial fibrillation (AF). OBJECTIVE We aimed to evaluate the diagnostic performance of a ring-type wearable device (CardioTracker, CART), which can detect AF using deep learning analysis of PPG signals. METHODS Patients with persistent AF who underwent cardioversion were recruited prospectively. We recorded PPG signals at the finger with CART and a conventional pulse oximeter before and after cardioversion over a period of 15 min (each instrument). Cardiologists validated the PPG rhythms with simultaneous single-lead electrocardiography. The PPG data were transmitted to a smartphone wirelessly and analyzed with a deep learning algorithm. We also validated the deep learning algorithm in 20 healthy subjects with sinus rhythm (SR). RESULTS In 100 study participants, CART generated a total of 13,038 30-s PPG samples (5850 for SR and 7188 for AF). Using the deep learning algorithm, the diagnostic accuracy, sensitivity, specificity, positive-predictive value, and negative-predictive value were 96.9%, 99.0%, 94.3%, 95.6%, and 98.7%, respectively. Although the diagnostic accuracy decreased with shorter sample lengths, the accuracy was maintained at 94.7% with 10-s measurements. For SR, the specificity decreased with higher variability of peak-to-peak intervals. However, for AF, CART maintained consistent sensitivity regardless of variability. Pulse rates had a lower impact on sensitivity than on specificity. The performance of CART was comparable to that of the conventional device when using a proper threshold. External validation showed that 94.99% (16,529/17,400) of the PPG samples from the control group were correctly identified with SR. CONCLUSIONS A ring-type wearable device with deep learning analysis of PPG signals could accurately diagnose AF without relying on electrocardiography. With this device, continuous monitoring for AF may be promising in high-risk populations. CLINICALTRIAL ClinicalTrials.gov NCT04023188; https://clinicaltrials.gov/ct2/show/NCT04023188


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Minghui Li ◽  
Weiwei Li ◽  
Liang Zhao

This study aimed to analyze the effect of the deep learning algorithm on ultrasound elastography on the treatment of cervical cancer with clustered regularly interspaced short palindromic repeats (CRISPR) short hairpin ribonucleic acid (shRNA) nanoparticles, aiming to provide a reference for the clinical application of deep learning to analyze the therapeutic effect of the disease. In this study, CRISPR and shRNA plasmid nanoparticle drugs were used to treat 55 patients with cervical cancer in the experimental group, and normal saline was injected to another 53 patients in the control group, so compare the effect of nanoparticles in the treatment of cervical cancer. Professional doctors and the recurrent neural network (RNN) intelligent algorithm were used to score cervical cancer based on the ultrasound elastograph images by taking blue, green, and red (BGR) as diagnosis criteria. As a result, the experimental group had a total of 217 points before drug administration and a total of 224 points after drug administration. Each patient had an average increase of 0.13 points. The control group had a total of 200 points before drug administration and a total of 223 points after drug administration, and each patient had an average increase of 0.43 points. The experimental group was obviously different from the control group ( P < 0.05 ). Each tissue image output by the RNN was clearer than the original image, and the score given by intelligent calculation was faster than that of professional doctors. The monitoring effect of the deep learning RNN intelligent algorithm on the therapeutic effect of nanomedicine was analyzed. It was found that the average accuracy of the experimental group and the control group was 98.95% and 90.34%, respectively; and the experimental group was greatly different from the control group ( P < 0.05 ). In short, nano-CRISPR and shRNA drugs had remarkable effects on the treatment of cervical cancer, and the scores given by the deep learning intelligent algorithm were faster and more accurate, which provided theoretical guidance for the clinical application of deep learning algorithms to analyze the treatment effects of diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Han Wang ◽  
Hui Wang ◽  
Zhonglve Huang ◽  
Huajun Su ◽  
Xiang Gao ◽  
...  

The epicardial adipose tissue volume (EATV) was quantitatively measured by deep learning-based computed tomography (CT) images, and its correlation with coronary heart disease (CHD) was investigated in this study. 150 patients who underwent coronary artery CT examination in hospital were taken as research objects. Besides, patients from the observation group (group A) suffered from vascular stenosis, while patients from the control group (group B) had no vascular stenosis. The deep convolutional neural network model was applied to construct deep learning algorithm, and deep learning-based CT images were adopted to quantitatively measure EATV. The results showed that the sensitivity, specificity, accuracy, and area under the curve (AUC) of the deep learning algorithm were 0.8512, 0.9899, 0.9623, and 0.9813, respectively. By comparison, the correlation results of the traditional George algorithm, Aslani algorithm, and Lahiri algorithm were all lower than those of the deep learning algorithm, and the difference was statistically substantial ( P < 0.05 ). The epicardial adipose tissue volume of the observation group (114.23 ± 55.46) was higher markedly than the volume of the control group (92.65 ± 43.28), with a statistically huge difference ( P < 0.05 ). The r values of EATV with plaque properties and the number of stenosed coronary vessels were 0.232 and 0.268 in turn, both showing significant positive correlation. In conclusion, the sensitivity and other index values of deep learning algorithm were improved greatly compared with traditional algorithm. CT images based on deep learning algorithm achieved good blood vessel segmentation effects. In addition, EATV was closely related to the development of CHD.


10.2196/16443 ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. e16443
Author(s):  
Soonil Kwon ◽  
Joonki Hong ◽  
Eue-Keun Choi ◽  
Byunghwan Lee ◽  
Changhyun Baik ◽  
...  

Background Continuous photoplethysmography (PPG) monitoring with a wearable device may aid the early detection of atrial fibrillation (AF). Objective We aimed to evaluate the diagnostic performance of a ring-type wearable device (CardioTracker, CART), which can detect AF using deep learning analysis of PPG signals. Methods Patients with persistent AF who underwent cardioversion were recruited prospectively. We recorded PPG signals at the finger with CART and a conventional pulse oximeter before and after cardioversion over a period of 15 min (each instrument). Cardiologists validated the PPG rhythms with simultaneous single-lead electrocardiography. The PPG data were transmitted to a smartphone wirelessly and analyzed with a deep learning algorithm. We also validated the deep learning algorithm in 20 healthy subjects with sinus rhythm (SR). Results In 100 study participants, CART generated a total of 13,038 30-s PPG samples (5850 for SR and 7188 for AF). Using the deep learning algorithm, the diagnostic accuracy, sensitivity, specificity, positive-predictive value, and negative-predictive value were 96.9%, 99.0%, 94.3%, 95.6%, and 98.7%, respectively. Although the diagnostic accuracy decreased with shorter sample lengths, the accuracy was maintained at 94.7% with 10-s measurements. For SR, the specificity decreased with higher variability of peak-to-peak intervals. However, for AF, CART maintained consistent sensitivity regardless of variability. Pulse rates had a lower impact on sensitivity than on specificity. The performance of CART was comparable to that of the conventional device when using a proper threshold. External validation showed that 94.99% (16,529/17,400) of the PPG samples from the control group were correctly identified with SR. Conclusions A ring-type wearable device with deep learning analysis of PPG signals could accurately diagnose AF without relying on electrocardiography. With this device, continuous monitoring for AF may be promising in high-risk populations. Trial Registration ClinicalTrials.gov NCT04023188; https://clinicaltrials.gov/ct2/show/NCT04023188


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1960
Author(s):  
Francesco Maria Giordano ◽  
Edy Ippolito ◽  
Carlo Cosimo Quattrocchi ◽  
Carlo Greco ◽  
Carlo Augusto Mallio ◽  
...  

(1) Aim: To test the performance of a deep learning algorithm in discriminating radiation therapy-related pneumonitis (RP) from COVID-19 pneumonia. (2) Methods: In this retrospective study, we enrolled three groups of subjects: pneumonia-free (control group), COVID-19 pneumonia and RP patients. CT images were analyzed by mean of an artificial intelligence (AI) algorithm based on a novel deep convolutional neural network structure. The cut-off value of risk probability of COVID-19 was 30%; values higher than 30% were classified as COVID-19 High Risk, and values below 30% as COVID-19 Low Risk. The statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and receiver operating characteristic (ROC) curve, with fitting performed using the maximum likelihood fit of a binormal model. (3) Results: Most patients presenting RP (66.7%) were classified by the algorithm as COVID-19 Low Risk. The algorithm showed high sensitivity but low specificity in the detection of RP against COVID-19 pneumonia (sensitivity = 97.0%, specificity = 2%, area under the curve (AUC = 0.72). The specificity increased when an estimated COVID-19 risk probability cut-off of 30% was applied (sensitivity 76%, specificity 63%, AUC = 0.84). (4) Conclusions: The deep learning algorithm was able to discriminate RP from COVID-19 pneumonia, classifying most RP cases as COVID-19 Low Risk.


Sign in / Sign up

Export Citation Format

Share Document