scholarly journals Assembly Quality Inspection of Combine Harvester Based on Whale Algorithm Optimization LSSVM

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Sixia Zhao ◽  
Yizhen Ma ◽  
Mengnan Liu ◽  
Xiaoliang Chen ◽  
Liyou Xu

In order to detect the assembly quality of the combine harvester accurately and effectively, a method for the assembly quality inspection of the combine harvester based on the improved whale algorithm (IWOA) to optimize the least square support vector machine is proposed. Aiming at the characteristics of whale optimization algorithm’s weak search ability and easy maturity, this paper introduces the cosine control factor and the sine time-varying adaptive weight to improve it and uses the benchmark function to verify the general adaptability of the algorithm. Combined with the local mean decomposition (LMD), the assembly quality inspection model of the combine harvester was established and applied to the Dongfanghong 4LZ-9A2 combine harvester for experimental verification. The experimental results show that the IWOA proposed in this paper has better optimization ability and adaptability. The average accuracy of the IWOA model proposed in this paper reaches 90.5%, which is 4% higher than that of the WOA model, and the standard deviation of the average accuracy is reduced by 0.15%, which indicates that the IWOA model has better stability.

Author(s):  
See Leng Chia ◽  
Min Yan Chia ◽  
Chai Hoon Koo ◽  
Yuk Feng Huang

Abstract Machine learning models hybridized with optimization algorithms have been applied to many real-life applications, including the prediction of water quality. However, the emergence of newly developed advanced algorithms can provide new scopes and possibilities for further enhancements. In this study, the least-square support vector machine (LSSVM) integrated with advanced optimization algorithms is presented, for the first time, in the prediction of water quality index (WQI) at the Klang River of Malaysia. Thereafter, the LSSVM model using RBF kernel was optimized using the hybrid particle swarm optimization and genetic algorithm (HPSOGA), whale optimization based on self-adapting parameter adjustment and mix mutation strategy (SMWOA) as well as ameliorative moth-flame optimization (AMFO) separately. It was found that the SMWOA-LSSVM model had the better performance for WQI prediction by having the best achievement root means square error (RMSE), mean absolute error (MAE), coefficient of determination (R2) and mean absolute percentage error (MAPE). Comprehensive comparison was done using the global performance indicator (GPI), whereby the SMWOA-LSSVM had the highest average score of 0.31. This could be attributed to the internal architecture of the SMWOA, which was catered to avoid local optima within short optimization period.


2018 ◽  
Vol 29 (1) ◽  
pp. 924-940 ◽  
Author(s):  
Ahmed A. Ewees ◽  
Mohamed Abd Elaziz

Abstract This paper presents an alternative method for predicting biochar yields from biomass thermochemical processes. As biochar is considered a renewable and sustainable energy source, it has received more attention. Several methods have been presented to predict biochar, such as neural network (NN) and least square support vector machine (LS-SVM). However, each of them has its own drawbacks, such as getting stuck in a local optimum, which occurs in NN, and lack of uncertainty and time complexity, as in LS-SVM. Therefore, this paper avoids this limitation by using a hybrid method between the adaptive neuro-fuzzy inference system (ANFIS) and gray wolf optimization (GWO) algorithm. The proposed method is called ANFIS-GWO, which consists of two stages. In the first stage, GWO is used to learn the parameters of ANFIS using the training set. Meanwhile, in the second stage, the testing set is used to evaluate the performance of the proposed ANFIS-GWO method. Three experiments were performed to assess the performance of the proposed method. The first experiment used a set of UCI (University of California, Irvine) benchmark datasets to evaluate the effectiveness of ANFIS-GWO. The aim of the second experiment was to evaluate the performance of the proposed ANFIS-GWO method to predict biochar yield from manure pyrolysis. The third experiment aimed to estimate the values of input parameters of pyrolysis that maximize biochar production. The obtained results were compared to those of other methods, such as ANFIS using gradient descent, practical swarm optimization, genetic algorithm, whale optimization algorithm, sine-cosine algorithm, and LS-SVM. The results of the ANFIS-GWO method were >35% of the standard ANFIS and also better than those of other methods.


2020 ◽  
Vol 16 ◽  
Author(s):  
Linqi Liu ◽  
JInhua Luo ◽  
Chenxi Zhao ◽  
Bingxue Zhang ◽  
Wei Fan ◽  
...  

BACKGROUND: Measuring medicinal compounds to evaluate their quality and efficacy has been recognized as a useful approach in treatment. Rhubarb anthraquinones compounds (mainly including aloe-emodin, rhein, emodin, chrysophanol and physcion) are its main effective components as purgating drug. In the current Chinese Pharmacopoeia, the total anthraquinones content is designated as its quantitative quality and control index while the content of each compound has not been specified. METHODS: On the basis of forty rhubarb samples, the correlation models between the near infrared spectra and UPLC analysis data were constructed using support vector machine (SVM) and partial least square (PLS) methods according to Kennard and Stone algorithm for dividing the calibration/prediction datasets. Good models mean they have high correlation coefficients (R2) and low root mean squared error of prediction (RMSEP) values. RESULTS: The models constructed by SVM have much better performance than those by PLS methods. The SVM models have high R2 of 0.8951, 0.9738, 0.9849, 0.9779, 0.9411 and 0.9862 that correspond to aloe-emodin, rhein, emodin, chrysophanol, physcion and total anthraquinones contents, respectively. The corresponding RMSEPs are 0.3592, 0.4182, 0.4508, 0.7121, 0.8365 and 1.7910, respectively. 75% of the predicted results have relative differences being lower than 10%. As for rhein and total anthraquinones, all of the predicted results have relative differences being lower than 10%. CONCLUSION: The nonlinear models constructed by SVM showed good performances with predicted values close to the experimental values. This can perform the rapid determination of the main medicinal ingredients in rhubarb medicinal materials.


2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


2021 ◽  
Vol 11 (2) ◽  
pp. 618
Author(s):  
Tanvir Tazul Islam ◽  
Md Sajid Ahmed ◽  
Md Hassanuzzaman ◽  
Syed Athar Bin Amir ◽  
Tanzilur Rahman

Diabetes is a chronic illness that affects millions of people worldwide and requires regular monitoring of a patient’s blood glucose level. Currently, blood glucose is monitored by a minimally invasive process where a small droplet of blood is extracted and passed to a glucometer—however, this process is uncomfortable for the patient. In this paper, a smartphone video-based noninvasive technique is proposed for the quantitative estimation of glucose levels in the blood. The videos are collected steadily from the tip of the subject’s finger using smartphone cameras and subsequently converted into a Photoplethysmography (PPG) signal. A Gaussian filter is applied on top of the Asymmetric Least Square (ALS) method to remove high-frequency noise, optical noise, and motion interference from the raw PPG signal. These preprocessed signals are then used for extracting signal features such as systolic and diastolic peaks, the time differences between consecutive peaks (DelT), first derivative, and second derivative peaks. Finally, the features are fed into Principal Component Regression (PCR), Partial Least Square Regression (PLS), Support Vector Regression (SVR) and Random Forest Regression (RFR) models for the prediction of glucose level. Out of the four statistical learning techniques used, the PLS model, when applied to an unbiased dataset, has the lowest standard error of prediction (SEP) at 17.02 mg/dL.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 997
Author(s):  
Jun Zhong ◽  
Xin Gou ◽  
Qin Shu ◽  
Xing Liu ◽  
Qi Zeng

Foreign object debris (FOD) on airport runways can cause serious accidents and huge economic losses. FOD detection systems based on millimeter-wave (MMW) radar sensors have the advantages of higher range resolution and lower power consumption. However, it is difficult for traditional FOD detection methods to detect and distinguish weak signals of targets from strong ground clutter. To solve this problem, this paper proposes a new FOD detection approach based on optimized variational mode decomposition (VMD) and support vector data description (SVDD). This approach utilizes SVDD as a classifier to distinguish FOD signals from clutter signals. More importantly, the VMD optimized by whale optimization algorithm (WOA) is used to improve the accuracy and stability of the classifier. The results from both the simulation and field case show the excellent FOD detection performance of the proposed VMD-SVDD method.


Sign in / Sign up

Export Citation Format

Share Document