scholarly journals Local Epochs Inefficiency Caused by Device Heterogeneity in Federated Learning

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Yan Zeng ◽  
Xin Wang ◽  
Junfeng Yuan ◽  
Jilin Zhang ◽  
Jian Wan

Federated learning is a new framework of machine learning, it trains models locally on multiple clients and then uploads local models to the server for model aggregation iteratively until the model converges. In most cases, the local epochs of all clients are set to the same value in federated learning. In practice, the clients are usually heterogeneous, which leads to the inconsistent training speed of clients. The faster clients will remain idle for a long time to wait for the slower clients, which prolongs the model training time. As the time cost of clients’ local training can reflect the clients’ training speed, and it can be used to guide the dynamic setting of local epochs, we propose a method based on deep learning to predict the training time of models on heterogeneous clients. First, a neural network is designed to extract the influence of different model features on training time. Second, we propose a dimensionality reduction rule to extract the key features which have a great impact on training time based on the influence of model features. Finally, we use the key features extracted by the dimensionality reduction rule to train the time prediction model. Our experiments show that, compared with the current prediction method, our method reduces 30% of model features and 25% of training data for the convolutional layer, 20% of model features and 20% of training data for the dense layer, while maintaining the same level of prediction error.

2021 ◽  
Vol 13 (9) ◽  
pp. 1713
Author(s):  
Songwei Gu ◽  
Rui Zhang ◽  
Hongxia Luo ◽  
Mengyao Li ◽  
Huamei Feng ◽  
...  

Deep learning is an important research method in the remote sensing field. However, samples of remote sensing images are relatively few in real life, and those with markers are scarce. Many neural networks represented by Generative Adversarial Networks (GANs) can learn from real samples to generate pseudosamples, rather than traditional methods that often require more time and man-power to obtain samples. However, the generated pseudosamples often have poor realism and cannot be reliably used as the basis for various analyses and applications in the field of remote sensing. To address the abovementioned problems, a pseudolabeled sample generation method is proposed in this work and applied to scene classification of remote sensing images. The improved unconditional generative model that can be learned from a single natural image (Improved SinGAN) with an attention mechanism can effectively generate enough pseudolabeled samples from a single remote sensing scene image sample. Pseudosamples generated by the improved SinGAN model have stronger realism and relatively less training time, and the extracted features are easily recognized in the classification network. The improved SinGAN can better identify sub-jects from images with complex ground scenes compared with the original network. This mechanism solves the problem of geographic errors of generated pseudosamples. This study incorporated the generated pseudosamples into training data for the classification experiment. The result showed that the SinGAN model with the integration of the attention mechanism can better guarantee feature extraction of the training data. Thus, the quality of the generated samples is improved and the classification accuracy and stability of the classification network are also enhanced.


Genetics ◽  
2021 ◽  
Author(s):  
Marco Lopez-Cruz ◽  
Gustavo de los Campos

Abstract Genomic prediction uses DNA sequences and phenotypes to predict genetic values. In homogeneous populations, theory indicates that the accuracy of genomic prediction increases with sample size. However, differences in allele frequencies and in linkage disequilibrium patterns can lead to heterogeneity in SNP effects. In this context, calibrating genomic predictions using a large, potentially heterogeneous, training data set may not lead to optimal prediction accuracy. Some studies tried to address this sample size/homogeneity trade-off using training set optimization algorithms; however, this approach assumes that a single training data set is optimum for all individuals in the prediction set. Here, we propose an approach that identifies, for each individual in the prediction set, a subset from the training data (i.e., a set of support points) from which predictions are derived. The methodology that we propose is a Sparse Selection Index (SSI) that integrates Selection Index methodology with sparsity-inducing techniques commonly used for high-dimensional regression. The sparsity of the resulting index is controlled by a regularization parameter (λ); the G-BLUP (the prediction method most commonly used in plant and animal breeding) appears as a special case which happens when λ = 0. In this study, we present the methodology and demonstrate (using two wheat data sets with phenotypes collected in ten different environments) that the SSI can achieve significant (anywhere between 5-10%) gains in prediction accuracy relative to the G-BLUP.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Gao ◽  
D Stojanovski ◽  
A Parker ◽  
P Marques ◽  
S Heitner ◽  
...  

Abstract Background Correctly identifying views acquired in a 2D echocardiographic examination is paramount to post-processing and quantification steps often performed as part of most clinical workflows. In many exams, particularly in stress echocardiography, microbubble contrast is used which greatly affects the appearance of the cardiac views. Here we present a bespoke, fully automated convolutional neural network (CNN) which identifies apical 2, 3, and 4 chamber, and short axis (SAX) views acquired with and without contrast. The CNN was tested in a completely independent, external dataset with the data acquired in a different country than that used to train the neural network. Methods Training data comprised of 2D echocardiograms was taken from 1014 subjects from a prospective multisite, multi-vendor, UK trial with the number of frames in each view greater than 17,500. Prior to view classification model training, images were processed using standard techniques to ensure homogenous and normalised image inputs to the training pipeline. A bespoke CNN was built using the minimum number of convolutional layers required with batch normalisation, and including dropout for reducing overfitting. Before processing, the data was split into 90% for model training (211,958 frames), and 10% used as a validation dataset (23,946 frames). Image frames from different subjects were separated out entirely amongst the training and validation datasets. Further, a separate trial dataset of 240 studies acquired in the USA was used as an independent test dataset (39,401 frames). Results Figure 1 shows the confusion matrices for both validation data (left) and independent test data (right), with an overall accuracy of 96% and 95% for the validation and test datasets respectively. The accuracy for the non-contrast cardiac views of >99% exceeds that seen in other works. The combined datasets included images acquired across ultrasound manufacturers and models from 12 clinical sites. Conclusion We have developed a CNN capable of automatically accurately identifying all relevant cardiac views used in “real world” echo exams, including views acquired with contrast. Use of the CNN in a routine clinical workflow could improve efficiency of quantification steps performed after image acquisition. This was tested on an independent dataset acquired in a different country to that used to train the model and was found to perform similarly thus indicating the generalisability of the model. Figure 1. Confusion matrices Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Ultromics Ltd.


2021 ◽  
Vol 11 (3) ◽  
pp. 1013
Author(s):  
Zvezdan Lončarević ◽  
Rok Pahič ◽  
Aleš Ude ◽  
Andrej Gams

Autonomous robot learning in unstructured environments often faces the problem that the dimensionality of the search space is too large for practical applications. Dimensionality reduction techniques have been developed to address this problem and describe motor skills in low-dimensional latent spaces. Most of these techniques require the availability of a sufficiently large database of example task executions to compute the latent space. However, the generation of many example task executions on a real robot is tedious, and prone to errors and equipment failures. The main result of this paper is a new approach for efficient database gathering by performing a small number of task executions with a real robot and applying statistical generalization, e.g., Gaussian process regression, to generate more data. We have shown in our experiments that the data generated this way can be used for dimensionality reduction with autoencoder neural networks. The resulting latent spaces can be exploited to implement robot learning more efficiently. The proposed approach has been evaluated on the problem of robotic throwing at a target. Simulation and real-world results with a humanoid robot TALOS are provided. They confirm the effectiveness of generalization-based database acquisition and the efficiency of learning in a low-dimensional latent space.


2022 ◽  
Author(s):  
Maxat Kulmanov ◽  
Robert Hoehndorf

Motivation: Protein functions are often described using the Gene Ontology (GO) which is an ontology consisting of over 50,000 classes and a large set of formal axioms. Predicting the functions of proteins is one of the key challenges in computational biology and a variety of machine learning methods have been developed for this purpose. However, these methods usually require significant amount of training data and cannot make predictions for GO classes which have only few or no experimental annotations. Results: We developed DeepGOZero, a machine learning model which improves predictions for functions with no or only a small number of annotations. To achieve this goal, we rely on a model-theoretic approach for learning ontology embeddings and combine it with neural networks for protein function prediction. DeepGOZero can exploit formal axioms in the GO to make zero-shot predictions, i.e., predict protein functions even if not a single protein in the training phase was associated with that function. Furthermore, the zero-shot prediction method employed by DeepGOZero is generic and can be applied whenever associations with ontology classes need to be predicted. Availability: http://github.com/bio-ontology-research-group/deepgozero


2018 ◽  
Vol 1 (1) ◽  
pp. 51-64
Author(s):  
Genta Kurnia Andriyanto

Practicing a piano is important for a pianist. A good training program certainly needs to be designed for every pianist. Long time and self-discipline as the basis for training, is actually not enough to get maximum results. Complaints such as saturation, boredom, finger injury, even frustration are always a cliché problem that often occurs. Creating a training program that is right on target and efficient is very necessary to be designed, so that training can be fun, stimulate and of course get a fast and significant development. Then what kind of exercise program should the pianist know in order to get maximum results? The following will explain some of the suggestions and trick that can help a pianist, so he can make the best use of training time.


2018 ◽  
Author(s):  
Uri Shaham

AbstractBiological measurements often contain systematic errors, also known as “batch effects”, which may invalidate downstream analysis when not handled correctly. The problem of removing batch effects is of major importance in the biological community. Despite recent advances in this direction via deep learning techniques, most current methods may not fully preserve the true biological patterns the data contains. In this work we propose a deep learning approach for batch effect removal. The crux of our approach is learning a batch-free encoding of the data, representing its intrinsic biological properties, but not batch effects. In addition, we also encode the systematic factors through a decoding mechanism and require accurate reconstruction of the data. Altogether, this allows us to fully preserve the true biological patterns represented in the data. Experimental results are reported on data obtained from two high throughput technologies, mass cytometry and single-cell RNA-seq. Beyond good performance on training data, we also observe that our system performs well on test data obtained from new patients, which was not available at training time. Our method is easy to handle, a publicly available code can be found at https://github.com/ushaham/BatchEffectRemoval2018.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-20
Author(s):  
Zheng Wang ◽  
Qiao Wang ◽  
Tingzhang Zhao ◽  
Chaokun Wang ◽  
Xiaojun Ye

Feature selection, an effective technique for dimensionality reduction, plays an important role in many machine learning systems. Supervised knowledge can significantly improve the performance. However, faced with the rapid growth of newly emerging concepts, existing supervised methods might easily suffer from the scarcity and validity of labeled data for training. In this paper, the authors study the problem of zero-shot feature selection (i.e., building a feature selection model that generalizes well to “unseen” concepts with limited training data of “seen” concepts). Specifically, they adopt class-semantic descriptions (i.e., attributes) as supervision for feature selection, so as to utilize the supervised knowledge transferred from the seen concepts. For more reliable discriminative features, they further propose the center-characteristic loss which encourages the selected features to capture the central characteristics of seen concepts. Extensive experiments conducted on various real-world datasets demonstrate the effectiveness of the method.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Dennis Segebarth ◽  
Matthias Griebel ◽  
Nikolai Stein ◽  
Cora R von Collenberg ◽  
Corinna Martin ◽  
...  

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.


Sign in / Sign up

Export Citation Format

Share Document