scholarly journals Synthesis and Characterization of Nanocrystalline YSZ Powder by Smoldering Combustion Synthesis

2006 ◽  
Vol 2006 ◽  
pp. 1-7 ◽  
Author(s):  
Ingeborg Kaus ◽  
Paul Inge Dahl ◽  
Johann Mastin ◽  
Tor Grande ◽  
Mari-Ann Einarsrud

Nanocrystalline yttria-stabilized zirconia (YSZ) powders with 8 mol% Y2O3have been produced using smoldering combustion synthesis with glycine as fuel and nitrate as oxidizer. The YSZ powders prepared by using different glycine to nitrate ratios (0.20–1.0) have been characterized by X-ray diffraction (crystallite size), thermogravimetry, infrared spectroscopy, surface area analysis, transmission electron microscopy, and dilatometry to determine the parameters giving the powder the best properties when it comes to densification properties. The influence of calcination temperature on crystallite size, surface area, and carbonate species remaining from the smoldering combustion reaction has been studied especially for the G/N ratio of 0.23 to reveal the optimal synthesis conditions. A G/N ratio of 0.23 and calcination in the range 650–900ºC in oxygen flow gave high quality powder with a crystallite size less than 10 nm. Densities of sintered bodies exhibit an increase for calcination temperatures above 600ºC, where most of the residual carbonate species has been removed.

2015 ◽  
Vol 12 (11) ◽  
pp. 3977-3988
Author(s):  
Mahmoud. N. Abdel-Salam ◽  
M. A. Abdel-Rahim ◽  
A. Gaber ◽  
A. Y. Abdel-Latief

Nanocrystalline tin dioxide synthesized by the homogeneous pre cipitation method using the reaction of tin tetrachloride pentahydrate and urea solutions has been investigated. The nanocrystalline powder has been traced at different calcination temperatures (300ºC-1050ºC), and then characterized by using   Thermogravemetric analysis, differential thermal analysis and x-ray diffraction. The microstructure of the obtained nanoparticles has been examined by scanning and transmission electron microscopy. The average crystallite size, determined by x-ray diffraction, was found to be in the range of 3 –30 nm. The analysis exhibited a tetragonal phase.  Optical properties were investigated by a UV–vis absorption spectrophotometer. The calculated optical band gap lies between 4.47–3.71 eV as a result of increasing the calcination temperatures and crystallite size. Surface area and porosity of SnO2 nanoparticles are measured. Specific surface area which is related to pore volume and decreases from 155 m2/g at 100ºC to 3.3 m2/g at 1050ºC. 


2008 ◽  
Vol 368-372 ◽  
pp. 1130-1132
Author(s):  
Hong Zhi Wang ◽  
Qi Zhang ◽  
Yun Xin Gu ◽  
Yao Gang Li ◽  
Mei Fang Zhu

Ti0.6Cr0.4OxNy bimetallic metal oxynitride nano powder was synthesized by ammonolysis of the nanosized Cr2O3/TiO2 composite powder with n(Ti):n(Cr)=6:4 at 800oC for 8 h. The precursor and the resulting oxynitride were characterized by Auger electron spectroscope (AES), X-ray diffraction analysis (XRD), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), and BET surface area techniques. The result indicated that the precursor was homogenous mixture of Cr2O3 and TiO2 with high BET surface area. The as-synthesized oxynitride powder contains only Ti0.6Cr0.4OxNy with cubic structure. The BET surface area of the oxynitride powder is 37.42 m2/g and the particle size is in the range of 20~30 nm.


1996 ◽  
Vol 454 ◽  
Author(s):  
Marc J. Ledoux ◽  
Cuong Pham-Huu ◽  
Christophe Bouchy ◽  
Pascal Del Gallo ◽  
Claude Estournes ◽  
...  

ABSTRACTHigh surface area (> 100 m2 · g−1) SiC doped with zirconium was prepared by the gas-solid reaction. The material was made up of three phases: β-SiC, covered by ZrO2 and an amorphous phase composed of Si, Zr and O. The characterization of the sample was performed by means of powder X-ray diffraction (XRD), surface area and porosity measurements by the BET method, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Preliminary catalytic tests, the standard n-C7 isomerization on supported MoOxCy showed that this new support was at least as effective as pure SiC.


2015 ◽  
Vol 1112 ◽  
pp. 62-65 ◽  
Author(s):  
Eka Sri Yusmartini ◽  
Dedi Setiabudidaya ◽  
Ridwan ◽  
Marsi ◽  
Faizal

Nanoparticles, particles of size 10-9have a high potential as water, waste water and air pollution treatment. In this research, nanoscale iron particles were synthesized by reduction of Fe2SO47 H2O by NaBH4at low temperature to avoid oxidation during the process. Characterization of the particles based on particle size, material structure, surface morphology and the composition of forming element was done by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectometry (EDS), respectively. Surface area and magnetic character was measured by BET surface area and vibrating sample magnetometry (VSM), respectively. Morfological observation showed that structured core-shell of size < 44 nm and shell of size ~ 3 nm with saturated magnetization value ~ 132 emu g‾¹ has been formed.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2017 ◽  
Vol 8 ◽  
pp. 1257-1265 ◽  
Author(s):  
Urszula Klekotka ◽  
Magdalena Rogowska ◽  
Dariusz Satuła ◽  
Beata Kalska-Szostko

Ferrite nanoparticles with nominal composition Me0.5Fe2.5O4 (Me = Co, Fe, Ni or Mn) have been successfully prepared by the wet chemical method. The obtained particles have a mean diameter of 11–16 ± 2 nm and were modified to improve their magnetic properties and chemical activity. The surface of the pristine nanoparticles was functionalized afterwards with –COOH and –NH2 groups to obtain a bioactive layer. To achieve our goal, two different modification approaches were realized. In the first one, glutaraldehyde was attached to the nanoparticles as a linker. In the second one, direct bonding of such nanoparticles with a bioparticle was studied. In subsequent steps, the nanoparticles were immobilized with enzymes such as albumin, glucose oxidase, lipase and trypsin as a test bioparticles. The characterization of the nanoparticles was acheived by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and Mössbauer spectroscopy. The effect of the obtained biocomposites was monitored by Fourier transform infrared spectroscopy. The obtained results show that in some cases the use of glutaraldehyde was crucial (albumin).


Sign in / Sign up

Export Citation Format

Share Document