scholarly journals Structure and spectra of photochemically obtained nanosized silver particles in presence of modified porous silica

2005 ◽  
Vol 7 (4) ◽  
pp. 193-198 ◽  
Author(s):  
Galina Krylova ◽  
Anna Eremenko ◽  
Natalia Smirnova ◽  
Susie Eustis

Mesoporous silica powders and films modified with organic sensitizer benzophenone were used as photocatalysts in the reaction of silver ion reduction by isopropyl alcohol under UV-irradiation withλ=253.7 nm and 365 nm in presence of colloidal silica as stabilizer. Morphological changes of silver colloids during irradiation were studied using transmission electron microscopy, and correlated to the absorption spectra.

1990 ◽  
Vol 38 (10) ◽  
pp. 1469-1478 ◽  
Author(s):  
D R Eisenmann ◽  
A H Salama ◽  
A M Zaki ◽  
S H Ashrafi

Colchicine is known to affect secretory, transport, and degradative functions of ameloblasts. The effects of colchicine on membrane-associated calcium and Ca2+,Mg2(+)-ATPase in secretory and maturation ameloblasts were investigated cytochemically. The pyroantimonate (PPA) method was used for localizing calcium and a modified Wachstein-Meisel medium was used to localize Ca2+,Mg2(+)-ATPase. Sections representing secretory and early maturation stages were examined by transmission electron microscopy. Morphological changes induced by colchicine included dislocated organelles and other well-established reactions to such anti-microtubule drugs. Calcium pyroantimonate (Ca-PA) deposits in most ameloblast types were markedly reduced, with the greater reduction occurring in those cells more severely altered morphologically. However, the cell membranes of both control and experimental smooth-ended maturation ameloblasts were essentially devoid of Ca-PA. The normal distribution and intensity of Ca2+,Mg2(+)-ATPase was not affected by colchicine. Because the observed reduction of membrane-associated calcium is apparently not mediated by Ca2+,Mg2(+)-ATPase in this case, other aspects of the calcium regulating system of ameloblasts are apparently targeted by colchicine.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2060
Author(s):  
Alejandro Roche ◽  
Luis Oriol ◽  
Rosa M. Tejedor ◽  
Milagros Piñol

Most of reported polymeric light-responsive nanocarriers make use of UV light to trigger morphological changes and the subsequent release of encapsulated cargoes. Moving from UV- to visible-responsive units is interesting for the potential biomedical applications of these materials. Herein we report the synthesis by ring opening polymerization (ROP) of a series of amphiphilic diblock copolymers, into which either UV or visible responsive azobenzenes have been introduced via copper(I) catalyzed azide-alkyne cycloaddition (CuAAC). These copolymers are able to self-assemble into spherical micelles or vesicles when dispersed in water. The study of the response of the self-assemblies upon UV (365 nm) or visible (530 or 625 nm) light irradiation has been studied by Transmission Electron Microscopy (TEM), Cryogenic Transmission Electron Microscopy (Cryo-TEM), and Dynamic Light Scattering (DLS) studies. Encapsulation of Nile Red, in micelles and vesicles, and Rhodamine B, in vesicles, and its light-stimulated release has been studied by fluorescence spectroscopy and confocal microscopy. Appreciable morphological changes have been induced with green light, and the subsequent release of encapsulated cargoes upon green light irradiation has been confirmed.


2013 ◽  
Vol 872 ◽  
pp. 74-78 ◽  
Author(s):  
S.P. Zhuravkov ◽  
Evgeny Plotnikov ◽  
Dmitry Martemiyanov ◽  
Nikolay A. Yavorovsky ◽  
Ulrich Hasse ◽  
...  

The morphological and structural characteristics of nanoscale silver particles obtained by the method of electric spark dispersion of metal granules in the liquid aprotic medium were obtained using atomic force microscopy, transmission electron microscopy, and dynamic light scattering spectroscopy. The specific surface, morphology, structure and the distribution by size of the particles are presented.


2003 ◽  
Vol 18 (5) ◽  
pp. 1096-1103 ◽  
Author(s):  
Kun'ichi Miyazawa ◽  
Koichi Hamamoto ◽  
Satoru Nagata ◽  
Tadatomo Suga

The structure of C60 and C70 whiskers with diameters between submicrometers and micrometers were analyzed by scanning electron microscopy and transmission electron microscopy. The fullerene whiskers were produced by forming liquid–liquid interfaces between toluene solutions of fullerenes and isopropyl alcohol. The growth fronts of C70 whiskers were observed to be crystalline. The C70 whiskers were assumed to be in a state of order–disorder transition. The whiskers of C60 are very flexible, and C60 whiskers bent strongly were torn into finer C60 whiskers. The C70 whiskers showed a higher crystallinity, though a high density of dislocations was observed in the C60 whiskers.


1993 ◽  
Vol 8 (11) ◽  
pp. 2942-2947 ◽  
Author(s):  
Sadaatsu Yamaguchi ◽  
Masaki Tsuji

Fine granules of poly(tetrafluoroethylene) (PTFE) were heat-treated/annealed on NaCl near its melting temperature (Tm) and/or at a temperature (Tc) between upper and lower feet of the exothermic peak in the DSC cooling process from Tm. Morphological changes of the granules were examined in the bright- and dark-field modes by transmission electron microscopy. When the granules were heat-treated near Tm, microfibrils of 20–30 nm in width and fibrils of 70–120 nm in width came out of the granules. The microfibrils were also observed in the fibrils. The microfibrils formed by heat treatment near Tm seemed to be identified as microfibrils of 20–30 nm in width which were recognized outside the granules annealed at Tc. It is expected that such a microfibril will grow to be a band in the band structure observed on the surface of bulk PTFE. Since the 0015 dark-field images showed that the PTFE chains in such microfibrils and fibrils are set perpendicular to their fibril axis, the chains should fold back and forth repeatedly at both lateral side-surfaces of the microfibrils and fibrils.


2019 ◽  
Vol 95 (10) ◽  
pp. 977-979
Author(s):  
Svetlana G. Yashchenko ◽  
S. Yu. Rybalko

Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.


2008 ◽  
Vol 71 (10) ◽  
pp. 2105-2109 ◽  
Author(s):  
T. SIVAROOBAN ◽  
N. S. HETTIARACHCHY ◽  
M. G. JOHNSON

The objective of this study was to use transmission electron microscopy to investigate the morphological changes that occurred in Listeria monocytogenes cells treated with grape seed extract (GSE), green tea extract (GTE), nisin, and combinations of nisin with either GSE or GTE. The test solutions were prepared with (i) 1% GSE, 1% GTE, 6,400 IU of nisin, and the combination of these dilutions with nisin or with (ii) the pure major phenolic constituents of GSE (0.02% epicatechin plus 0.02% catechin) or GTE (0.02% epicatechin plus 0.02% caffeic acid) and their combinations with 6,400 IU of nisin in tryptic soy broth with 0.6% yeast extract (TSBYE). Test solutions were inoculated with L. monocytogenes at approximately 106 CFU/ml and incubated for 3 or 24 h at 37°C. After 3 h of incubation, cells were harvested and evaluated under a transmission electron microscope (JEOL-100 CX) operating at 80 kV (50,000×). Microscopic examination revealed an altered cell membrane and condensed cytoplasm when L. monocytogenes cells were exposed to a combination of nisin with either GSE or GTE or to pure compounds of the major phenolic constituents in combination. After 24 h of incubation at 37°C, the combinations of nisin with GSE and nisin with GTE reduced the L. monocytogenes population to undetectable levels and 3.7 log CFU/ml, respectively. These observations indicate that the combination of nisin with either GSE or GTE had a synergistic effect, and the combinations of nisin with the major phenolic constituents were most likely associated with the L. monocytogenes cell damage during inactivation in TSBYE at 37°C.


Sign in / Sign up

Export Citation Format

Share Document