scholarly journals Paneth cells and intestinal health

2021 ◽  
Vol 29 (23) ◽  
pp. 1362-1372
Author(s):  
Yi-Min Han ◽  
Han Gao ◽  
Rong-Xuan Hua ◽  
Chen Liang ◽  
Yue-Xin Guo ◽  
...  
NeoReviews ◽  
2010 ◽  
Vol 11 (10) ◽  
pp. e551-e557 ◽  
Author(s):  
A. J. Ouellette ◽  
V. Niklas

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1432
Author(s):  
Alip Kumar ◽  
Sarbast K. Kheravii ◽  
Lily Li ◽  
Shu-Biao Wu

This study evaluated the potential of monoglyceride blend (MG) and buffered formic acid (FA) as alternatives to antibiotics in the performance and intestinal health of broilers under clinical necrotic enteritis (NE) challenge. A total of 544 as-hatched Ross 308 broiler chicks were randomly distributed to 32-floor pens housing 17 birds per pen. The four treatments were: NC—non-additive control; ZBS—antibiotic group supplemented with zinc bacitracin and salinomycin; MG—additive MG supplementation in the starter phase only; and MGFA—additive MG in starter phase and FA in grower and finisher phases. All birds were challenged with Eimeria spp. and Clostridium perfringens. Results showed that the NC group had lower BWG and higher FCR than the ZBS group in the grower and overall period (p < 0.05). The NC group had higher NE-caused mortality (days 14 to 17) than the ZBS group (p < 0.05). Birds fed MG had lower NE-caused mortality than the NC group (p < 0.05). Birds fed MG had upregulated jejunal tight junction protein1 (TJP1) and immunoglobulin (IgG) on day 16 and improved gross energy digestibility on day 24 than the NC group (p < 0.05). These findings suggest that supplementation of MG may improve intestinal health and protect birds from clinical NE occurrence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Criado-Mesas ◽  
N. Abdelli ◽  
A. Noce ◽  
M. Farré ◽  
J. F. Pérez ◽  
...  

AbstractThere is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 18-19
Author(s):  
Martin Nyachoti ◽  
Jinyoung Lee

Abstract Dietary manipulation with respect to crude protein (CP) content has been suggested as part of the overall strategy for the nutritional management of weanling pigs to improve intestinal health. This has focused on the use of low CP diets that are appropriately fortified with crystalline amino acids (AA). Use of low CP diets minimizes the amount of undigested dietary protein entering the large intestine and being subjected to bacterial fermentation. This is important because protein fermentation leads to the production of toxic metabolites and encourages the proliferation of pathogenic bacteria, thus causing enteric problems such as post-weaning diarrhea. There have been considerable efforts to elucidate the mechanisms underlying the potential benefits of feeding low CP diets to piglets. In addition to impacting the intestinal microbiome and its associated activities, it is clear that feeding a low CP diets interferes with the attachment of enterotoxigenic E. coli to the intestinal mucosa, thus minimizing its ability to cause disease. Another area of interest has been how use low CP diets in combination with other dietary manipulations to further enhance intestinal health in piglets. In this regards, existing evidence suggests that a low CP diet may be used in combination with other dietary interventions, such as probiotics and dietary fiber, to further enhance gut health outcomes in piglets. Also, addressing the potential reduction in piglet performance when feeding low CP diets by looking more into diet formulation to avoid deficiencies of essential AA or even some of non-essential AA, is critical for successful use low CP diets. Based on the available information, a reduction of dietary protein by four percentage units coupled with appropriate AA supplementation can be a useful dietary strategy to improve intestinal health.


animal ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 100064
Author(s):  
V. Caprarulo ◽  
C. Giromini ◽  
L. Rossi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document