Insulin Receptor Substrate Regulation of Phosphoinositide 3-Kinase: Figure 1.

2010 ◽  
Vol 17 (2) ◽  
pp. 206-211 ◽  
Author(s):  
Heather E. Metz ◽  
A. McGarry Houghton
2005 ◽  
Vol 65 (20) ◽  
pp. 9164-9168 ◽  
Author(s):  
Takayuki Asano ◽  
Yixin Yao ◽  
Sonyo Shin ◽  
James McCubrey ◽  
James L. Abbruzzese ◽  
...  

2002 ◽  
Vol 277 (51) ◽  
pp. 49591-49597 ◽  
Author(s):  
Catherine A. Wolkow ◽  
Manuel J. Muñoz ◽  
Donald L. Riddle ◽  
Gary Ruvkun

An insulin-like signaling pathway regulates development and lifespan inCaenorhabditis elegans. Genetic screens that identified many components of theC. elegansinsulin pathway did not identify homologs of insulin receptor substrates or the phosphoinositide 3-kinase (PI3K) adaptor/regulatory subunit, which are both required for signaling by mammalian insulin/insulin-like growth factor I pathways. TheC. elegansgenome contains one homolog of each protein. TheC. elegansversions of insulin receptor substrate (IST-1) and PI3K p50/p55 (AAP-1) share moderate sequence similarity with their vertebrate andDrosophilacounterparts. Genetic experiments show thatist-1andaap-1potentiateC. elegansinsulin-like signaling, although they are not required for signaling in the pathway under most conditions. Worms lacking AAP-1 activity because of the mutationaap-1(m889) constitutively arrest development at the dauer larval stage when raised at high temperatures.aap-1mutants also live longer than wild-type animals, a phenotype observed in otherC. elegansmutants with defects in DAF-2 signaling. Interestingly, IST-1 appears to be required for signaling through a pathway that may act in parallel to AGE-1/PI3K.


2005 ◽  
Vol 388 (2) ◽  
pp. 713-720 ◽  
Author(s):  
Ingeborg HERS ◽  
Jeremy M. TAVARÉ

Serine and threonine phosphorylation of IRS-1 (insulin receptor substrate-1) has been reported to decrease its ability to be tyrosine-phosphorylated by the insulin receptor. Insulin itself may negatively regulate tyrosine phosphorylation of IRS-1 through a PI3K (phosphoinositide 3-kinase)-dependent feedback pathway. In the present study, we examined the regulation and role of IRS-1 serine phosphorylation in the modulation of IRS-1 tyrosine phosphorylation in physiologically relevant cells, namely freshly isolated primary adipocytes. We show that insulin-stimulated phosphorylation of Ser312 and Ser616 in IRS-1 was relatively slow, with maximal phosphorylation achieved after 20 and 5 min respectively. The effect of insulin on phosphorylation of both these sites required the activation of PI3K and the MAPKs (mitogen-activated protein kinases) ERK1/2 (extracellular-signal-regulated kinase 1 and 2), but not the activation of mTOR (mammalian target of rapamycin)/p70S6 kinase, JNK (c-Jun N-terminal kinase) or p38MAPK. Although inhibition of PI3K and ERK1/2 both substantially decreased insulin-stimulated phosphorylation of Ser312 and Ser616, only wortmannin enhanced insulin-stimulated tyrosine phosphorylation of IRS-1. Furthermore, inhibition of mTOR/p70S6 kinase, JNK or p38MAPK had no effect on insulin-stimulated IRS-1 tyrosine phosphorylation. The differential effect of inhibition of ERK1/2 on insulin-stimulated IRS-1 phosphorylation of Ser312/Ser616 and tyrosine indicates that these events are independent of each other and that phosphorylation of Ser312/Ser616 is not responsible for the negative regulation of IRS-1 tyrosine phosphorylation mediated by PI3K in primary adipocytes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alison L Kearney ◽  
Dougall M Norris ◽  
Milad Ghomlaghi ◽  
Martin Kin Lok Wong ◽  
Sean J Humphrey ◽  
...  

The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues. Phosphorylation results in the depletion of plasma membrane-localised IRS1/2, reducing the pool available for interaction with the insulin receptor. Together these events limit plasma membrane-associated PI3K and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis. We identified two Akt-dependent phosphorylation sites in IRS2 at S306 (S303 in mouse) and S577 (S573 in mouse) that are key drivers of this negative feedback. These findings establish a novel mechanism by which the kinase Akt acutely controls PIP3 abundance, through post-translational modification of the IRS scaffold.


1999 ◽  
Vol 339 (2) ◽  
pp. 281-289 ◽  
Author(s):  
Isabelle CASTAN ◽  
Jonny WIJKANDER ◽  
Vincent MANGANIELLO ◽  
Eva DEGERMAN

Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01–1 µM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.


2004 ◽  
Vol 287 (4) ◽  
pp. F700-F706 ◽  
Author(s):  
Harold A. Franch ◽  
Sina Raissi ◽  
Xiaonan Wang ◽  
Bin Zheng ◽  
James L. Bailey ◽  
...  

Chronic acidosis is a stimulus for proteolysis in muscle in vivo, but the mechanism of this response is unknown. We tested the hypothesis that acidosis or TNF-α, a cytokine whose production increases in acidosis, regulates proteolysis by inhibiting insulin signaling through phosphoinositide 3-kinase (PI3K). In cultured L6 myotubes, acidified (pH 7.1) media did not accelerate the basal protein degradation rate, but it inhibited insulin’s ability to suppress proteolysis. Insulin receptor substrate-1 (IRS-1)-associated PI3K activity was not altered in cells acidified for 10 min but was strongly inhibited in cells incubated at pH 7.1 for 24 h. Phosphorylation of Akt was also suppressed by acidification for 24 h. Acidification did not induce changes in IRS-1 abundance, insulin-stimulated IRS-1 tyrosine phosphorylation, or the amount of PI3K p85 regulatory subunit. In contrast to acidification, TNF-α suppressed proteolysis in the presence or absence of insulin but had no effect on IRS-1-associated PI3K activity. To establish that the PI3K pathway can regulate protein degradation in muscle, we measured proteolysis in cells after inhibition of PI3K activity with LY-294002 or infection with an adenovirus encoding a dominant negative PI3K p85α-subunit. Both approaches inhibited insulin-induced suppression of proteolysis to a degree similar to that seen with acidification. We conclude that acidosis accelerates protein degradation by impairing insulin signaling through PI3K in muscle cells.


2009 ◽  
Vol 204 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Michael Udelhoven ◽  
Mareike Pasieka ◽  
Uschi Leeser ◽  
Wilhelm Krone ◽  
Markus Schubert

Since neuronal insulin receptor substrate 2 (IRS2)-mediated signals coordinate key processes in rodent physiology such as food intake, fertility, longevity, and aging-related behavior, we analyzed the mechanisms of neuronal IRS2 expression in neuroblastoma (SHSY5Y) and hypothalamic (GT1-7) cell lines. Using dual luciferase reporter assays and IRS2 promoter deletion constructs, we identified a regulatory cassette within the IRS2 promoter between −779 and −679 bp from the translational start which is responsible for ∼50% of neuronal IRS2 promoter activity. Chromatin immunoprecipitation assays and electromobility shift assay revealed four overlapping ZBP89/specificity protein 1 (SP1) binding sites which alternatively bind to ZBP89 (ZNF148 as listed in the HUGO Database) or SP1. Activation of this cassette is inhibited by phosphoinositide-3-kinase (PI3K) via increased ZBP89 binding to the promoter. Serum starvation caused increased SP1 binding at one specific SP1 site and decreased binding to another, proving a regulatory interaction between the different binding sites within this promoter cassette to tightly control IRS2 expression. Mutants containing all the possible combinations of one, two, three, or all the four SP1 binding sites of the IRS2 promoter revealed that SP1 binding to one particular site is most important for promoter activation. Stable downregulation of ZBP89 using siRNA substantially increased IRS2 mRNA and protein expression. Thus, alternative binding of ZBP89 or SP1 to the described region in the IRS2 promoter regulates neuronal IRS2 expression in a PI3K-dependent manner.


2000 ◽  
Vol 11 (2) ◽  
pp. 735-746 ◽  
Author(s):  
Hiroo Ueno ◽  
Eisaku Kondo ◽  
Ritsuko Yamamoto-Honda ◽  
Kazuyuki Tobe ◽  
Tetsuya Nakamoto ◽  
...  

Insulin receptor substrate (IRS) proteins are docking proteins that couple growth factor receptors to various effector molecules, including phosphoinositide-3 kinase, Grb-2, Syp, and Nck. Here we show that IRS-1 associates with the loop domain of Bcl-2 and synergistically up-regulates antiapoptotic function of Bcl-2. IRS-2 but not IRS-3 binds to Bcl-2, and IRS-1 associates with Bcl-XL but not with Bax or Bik. Overexpression of IRS-1 suppresses phosphorylation of Bcl-2 induced by stimulation with insulin, and the hypophosphorylation may lead to its enhanced antiapoptotic activity. The binding site for Bcl-2 is located on the carboxyl half-domain of IRS-1. IRS-3, which lacks the corresponding region, dominant-negatively abrogates the survival effects of IRS-1 and Bcl-2. For the antiapoptotic activity of IRS-1, binding to Bcl-2 is more critical than activating phosphoinositide-3 kinase. Our results indicate that IRS proteins transmit signals from the insulin receptor to Bcl-2, thus regulating cell survival probably through regulating phosphorylation of Bcl-2.


Sign in / Sign up

Export Citation Format

Share Document