scholarly journals Therapeutic Potential and Molecular Mechanism of a Novel, Potent, Nonpeptide, Smac Mimetic SM-164 in Combination with TRAIL for Cancer Treatment

2011 ◽  
Vol 10 (5) ◽  
pp. 902-914 ◽  
Author(s):  
Jianfeng Lu ◽  
Donna McEachern ◽  
Haiying Sun ◽  
Longchuan Bai ◽  
Yuefeng Peng ◽  
...  
2012 ◽  
Vol 69 (5) ◽  
pp. 1353-1362 ◽  
Author(s):  
Yoichi Ozawa ◽  
Kazutomi Kusano ◽  
Takashi Owa ◽  
Akira Yokoi ◽  
Makoto Asada ◽  
...  

2008 ◽  
Vol 78 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Fan ◽  
Jiang ◽  
Zhang ◽  
Bai

In efforts to identify naturally occurring compounds that act as protective agents, resveratrol, a phytoalexin existing in wine, has attracted much interest because of its diverse pharmacological characteristics. Considering that apoptosis induction is the most potent defense approach for cancer treatment, we have tried to summarize our present understanding of apoptosis induction by resveratrol based on the two major apoptosis pathways.


2018 ◽  
Vol 5 (6) ◽  
pp. 172317 ◽  
Author(s):  
Chang K. Zhao ◽  
Chan Li ◽  
Xian H. Wang ◽  
Yu J. Bao ◽  
Fu H. Yang ◽  
...  

A series of conjugates of 10-hydroxy camptothecin (HCPT) with functionalized norcantharidin derivatives were regio-selectively synthesized in the condition of (3-dimethylaminopropyl) ethyl-carbodiimide monohydrochloride in a moderate yield. The synthesized conjugate HCPT pro-drugs can also suppress cancer cell growth in vitro . These conjugated pro-drug constructs possess therapeutic potential as novel bi-functional conjugate platforms for cancer treatment.


2015 ◽  
Vol 32 (8) ◽  
pp. 1170-1182 ◽  
Author(s):  
A. AlQathama ◽  
J. M. Prieto

Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. We here systematically and critically survey more than 30 natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and chart the mechanisms of action for this underexploited property.


2021 ◽  
Vol 06 ◽  
Author(s):  
Adnan Badran ◽  
Joelle Mesmar ◽  
Nadine Wehbe ◽  
Riham El Kurdi ◽  
Digambara Patra ◽  
...  

: Breast cancer remains one of the most common cancers in women worldwide, and despite significant improvements in treatment modalities, the prognosis of this cancer is still poor. Herbs and plant extracts have been associated with various health benefits, and traditional folk medicine is still receiving great interest among patients as proven by accumulated records, tolerable side effects of herbal compounds compared to their synthetic counterparts, and low cost. Curcumin is a polyphenol identified as the main active ingredient in turmeric and has been used in the treatment of various diseases and ailments. Additionally, the pharmacological activities of curcumin on many cancers have been investigated substantially due to its ability to regulate many signaling pathways involved in cancer tumorigenesis and metastasis. However, the low solubility and bioavailability of curcumin limit its benefits, urging the need for new curcumin formulations and delivery systems. Nanotechnology has been widely publicized in cancer treatment not only to overcome the limitations of poorly soluble and physiologically unstable compounds but also to improve the delivery of the drug to the diseased site and cellular uptake. In this review, we summarized the main anti-tumor effect of curcumin and its mode of action on breast cancer and focused on the anticancer efficacy of various and recent curcumin nanoformulations and delivery systems. Such nanotechnological systems could pave the way to address a new future direction in this research area, enhancing the therapeutic potential of curcumin in the treatment of breast cancer. In the next few years, there will be more focus on developing curcumin-based materials for breast cancer treatment.


2019 ◽  
Vol 19 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Barbara Dariš ◽  
Mojca Tancer Verboten ◽  
Željko Knez ◽  
Polonca Ferk

The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids. The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes. Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer. In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite. In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types. Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries. In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration. Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients. The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.


2019 ◽  
Vol 9 ◽  
Author(s):  
Adele Chimento ◽  
Ivan Casaburi ◽  
Paola Avena ◽  
Francesca Trotta ◽  
Arianna De Luca ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3784
Author(s):  
Anne M. Noonan ◽  
Amanda Cousins ◽  
David Anderson ◽  
Kristen P. Zeligs ◽  
Kristen Bunch ◽  
...  

Inhibitor of apoptosis (IAP) proteins are frequently upregulated in ovarian cancer, resulting in the evasion of apoptosis and enhanced cellular survival. Birinapant, a synthetic second mitochondrial activator of caspases (SMAC) mimetic, suppresses the functions of IAP proteins in order to enhance apoptotic pathways and facilitate tumor death. Despite on-target activity, however, pre-clinical trials of single-agent birinapant have exhibited minimal activity in the recurrent ovarian cancer setting. To augment the therapeutic potential of birinapant, we utilized a high-throughput screening matrix to identify synergistic drug combinations. Of those combinations identified, birinapant plus docetaxel was selected for further evaluation, given its remarkable synergy both in vitro and in vivo. We showed that this synergy results from multiple convergent pathways to include increased caspase activation, docetaxel-mediated TNF-α upregulation, alternative NF-kB signaling, and birinapant-induced microtubule stabilization. These findings provide a rationale for the integration of birinapant and docetaxel in a phase 2 clinical trial for recurrent ovarian cancer where treatment options are often limited and minimally effective.


2011 ◽  
Vol 11 (3) ◽  
pp. 229-240 ◽  
Author(s):  
Gaurav Luther ◽  
Eric R. Wagner ◽  
Gaohui Zhu ◽  
Quan Kang ◽  
Qing Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document