Immunotherapy with Dendritic Cells as a Cancer Treatment: Perspectives and Therapeutic Potential

Author(s):  
Andre Aleixo ◽  
Márcia Michelin ◽  
Eddie Murta
2001 ◽  
Vol 21 (1-3) ◽  
pp. 9 ◽  
Author(s):  
David F. Claxton ◽  
John McMannis ◽  
Richard E. Champlin ◽  
Aniruddha Choudhury

Oncogene ◽  
2021 ◽  
Author(s):  
Francesca Alfei ◽  
Ping-Chih Ho ◽  
Wan-Lin Lo

AbstractThe exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell–T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.


2021 ◽  
Vol 22 (10) ◽  
pp. 5386
Author(s):  
Maria Namwanje ◽  
Bijay Bisunke ◽  
Thomas V. Rousselle ◽  
Gene G. Lamanilao ◽  
Venkatadri S. Sunder ◽  
...  

Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.


2018 ◽  
Vol 5 (6) ◽  
pp. 172317 ◽  
Author(s):  
Chang K. Zhao ◽  
Chan Li ◽  
Xian H. Wang ◽  
Yu J. Bao ◽  
Fu H. Yang ◽  
...  

A series of conjugates of 10-hydroxy camptothecin (HCPT) with functionalized norcantharidin derivatives were regio-selectively synthesized in the condition of (3-dimethylaminopropyl) ethyl-carbodiimide monohydrochloride in a moderate yield. The synthesized conjugate HCPT pro-drugs can also suppress cancer cell growth in vitro . These conjugated pro-drug constructs possess therapeutic potential as novel bi-functional conjugate platforms for cancer treatment.


2012 ◽  
Vol 40 (2) ◽  
pp. 103-104 ◽  
Author(s):  
Hans-Robert Metelmann ◽  
Peter Hyckel ◽  
Fred Podmelle

2015 ◽  
Vol 32 (8) ◽  
pp. 1170-1182 ◽  
Author(s):  
A. AlQathama ◽  
J. M. Prieto

Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. We here systematically and critically survey more than 30 natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and chart the mechanisms of action for this underexploited property.


2002 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Alexandre Zlotta ◽  
Michel Toungouz ◽  
Micheline Lambermont ◽  
Pierre Hoffman ◽  
Christian Garbar

2021 ◽  
Vol 06 ◽  
Author(s):  
Adnan Badran ◽  
Joelle Mesmar ◽  
Nadine Wehbe ◽  
Riham El Kurdi ◽  
Digambara Patra ◽  
...  

: Breast cancer remains one of the most common cancers in women worldwide, and despite significant improvements in treatment modalities, the prognosis of this cancer is still poor. Herbs and plant extracts have been associated with various health benefits, and traditional folk medicine is still receiving great interest among patients as proven by accumulated records, tolerable side effects of herbal compounds compared to their synthetic counterparts, and low cost. Curcumin is a polyphenol identified as the main active ingredient in turmeric and has been used in the treatment of various diseases and ailments. Additionally, the pharmacological activities of curcumin on many cancers have been investigated substantially due to its ability to regulate many signaling pathways involved in cancer tumorigenesis and metastasis. However, the low solubility and bioavailability of curcumin limit its benefits, urging the need for new curcumin formulations and delivery systems. Nanotechnology has been widely publicized in cancer treatment not only to overcome the limitations of poorly soluble and physiologically unstable compounds but also to improve the delivery of the drug to the diseased site and cellular uptake. In this review, we summarized the main anti-tumor effect of curcumin and its mode of action on breast cancer and focused on the anticancer efficacy of various and recent curcumin nanoformulations and delivery systems. Such nanotechnological systems could pave the way to address a new future direction in this research area, enhancing the therapeutic potential of curcumin in the treatment of breast cancer. In the next few years, there will be more focus on developing curcumin-based materials for breast cancer treatment.


2019 ◽  
Vol 19 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Barbara Dariš ◽  
Mojca Tancer Verboten ◽  
Željko Knez ◽  
Polonca Ferk

The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids. The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes. Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer. In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite. In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types. Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries. In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration. Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients. The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.


2019 ◽  
Vol 9 ◽  
Author(s):  
Adele Chimento ◽  
Ivan Casaburi ◽  
Paola Avena ◽  
Francesca Trotta ◽  
Arianna De Luca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document