Abstract 2013: Modulation of cellular uptake and increased therapeutic efficacy of the azacytidine-elaidic acid ester CP-4200 in vitro and in vivo

Author(s):  
Bodo Brueckner ◽  
Maria Rius ◽  
Maria Rivera Markelova ◽  
Iduna Fichtner ◽  
Petter-Arnt Hals ◽  
...  
2007 ◽  
Vol 67 (8) ◽  
pp. 3818-3826 ◽  
Author(s):  
Sanjeev Banerjee ◽  
Maha Hussain ◽  
Zhiwei Wang ◽  
Allen Saliganan ◽  
Mingxin Che ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mylène Tajan ◽  
Marc Hennequart ◽  
Eric C. Cheung ◽  
Fabio Zani ◽  
Andreas K. Hock ◽  
...  

AbstractMany tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


2017 ◽  
Vol 52 ◽  
pp. 44-50 ◽  
Author(s):  
Zhi-Jun Liu ◽  
Jing Bai ◽  
Feng-Li Liu ◽  
Xiang-Yang Zhang ◽  
Jing-Zhang Wang

2020 ◽  
Author(s):  
Hua Sang ◽  
Jiali Liu ◽  
Fang Zhou ◽  
Xiaofang Zhang ◽  
Jingwei Zhang ◽  
...  

<p></p><p>Key events including antibody-antigen affinity, ADC internalization, trafficking and lysosomal proteolysis-mediated payload release combinatorially determine the therapeutic efficacy and safety for ADCs. Nevertheless, a universal technology that efficiently and conveniently evaluates the involvement of these above elements to ADC payload release and hence the final therapeutic outcomes for mechanistic studies and quality assessment is lacking. Considering the plethora of ADC candidates under development owing to the ever-evolving linker and drug chemistry, we developed a TArget-Responsive Subcellular Catabolism (TARSC) approach that measures catabolites kinetics for given ADCs and elaborates how each individual step ranging from antigen binding to lysosomal proteolysis affects ADC catabolism by targeted interferences. Using a commercial and a biosimilar ado-trastuzumab emtansine (T-DM1) as model ADCs, we recorded unequivocal catabolites kinetics for the two T-DM1s in the presence and absence of the targeted interferences. Their negligible differences in TARSC profiles fitting with their undifferentiated therapeutic outcomes suggested by <i>in vitro</i> viability assays and <i>in vivo</i> tumor growth assays, highlighting TARSC analysis as a good indicator of ADC efficacy and bioequivalency. Lastly, we demonstrated the use of TARSC in assessing payload release efficiency for a new Trastuzumab-toxin conjugate. Collectively, we demonstrated the use of TARSC in characterizing ADC catabolism at (sub)cellular level, and in systematically depicting whether given target proteins affect ADC payload release and hence therapeutic efficacy. We anticipate its future use in high-throughput screening, quality assessment and mechanistic understanding of ADCs for drug R&D before proceeding to costly <i>in vivo</i> experiments.</p><br><p></p>


2019 ◽  
Vol 20 (16) ◽  
pp. 3928
Author(s):  
Bok-Nam Park ◽  
Ga-Hee Kim ◽  
Seung-A Ko ◽  
Ga-Hee Shin ◽  
Su-Jin Lee ◽  
...  

In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells (p = 0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g, p = 0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3211
Author(s):  
Gils Jose ◽  
Yu-Jen Lu ◽  
Jung-Tung Hung ◽  
Alice L. Yu ◽  
Jyh-Ping Chen

The consistent expression of disialoganglioside GD2 in neuroblastoma tumor cells and its restricted expression in normal tissues open the possibility to use it for molecularly targeted neuroblastoma therapy. On the other hand, immunoliposomes combining antibody-mediated tumor recognition with liposomal delivery of chemotherapeutics have been proved to enhance therapeutic efficacy in brain tumors. Therefore, we develop immunoliposomes (ImmuLipCP) conjugated with anti-GD2 antibody, for targeted co-delivery of CPT-11 and panobinostat in this study. U87MG human glioma cell line and its drug resistant variant (U87DR), which were confirmed to be associated with low and high expression of cell surface GD2, were employed to compare the targeting efficacy. From in vitro cytotoxicity assay, CPT-11 showed synergism drug interaction with panobinostat to support co-delivery of both drugs with ImmuLipCP for targeted synergistic combination chemotherapy. The molecular targeting mechanism was elucidated from intracellular uptake efficacy by confocal microscopy and flow cytometry analysis, where 6-fold increase in liposome and 1.8-fold increase in drug uptake efficiency was found using targeted liposomes. This enhanced intracellular trafficking for drug delivery endows ImmuLipCP with pronounced cytotoxicity toward U87DR cells in vitro, with 1.6-fold increase of apoptosis rate. Using xenograft nude mice model with subcutaneously implanted U87DR cells, we observe similar biodistribution profile but 5.1 times higher accumulation rate of ImmuLip from in vivo imaging system (IVIS) observation of Cy5.5-labelled liposomes. Taking advantage of this highly efficient GD-2 targeting, ImmuLipCP was demonstrated to be an effective cancer treatment modality to significantly enhance the anti-cancer therapeutic efficacy in U87DR tumors, shown from the significant reduced tumor size in and prolonged survival time of experiment animals as well as diminished expression of cell proliferation and enhanced expression of apoptosis marker proteins in tumor section.


2018 ◽  
Vol 9 (1) ◽  
pp. 234-242 ◽  
Author(s):  
Jin-Oh Chung ◽  
Seon-Bong Lee ◽  
Kang-Hyun Jeong ◽  
Ji-Hoon Song ◽  
Su-Kyung Kim ◽  
...  

The catechol-containing flavonoids quercetin and fisetin could positively affect the absorption of catechins due to their strong affinity for COMT, which can methylate and cause the excretion of catechins.


Sign in / Sign up

Export Citation Format

Share Document