Abstract 4875: In vivo and in vitro generation and characterisation of EGFR-TKI resistance in patient-derived xenograft (PDX) and cell line-derived xenograft (CDX) models of NSCLC with activating EGFR mutations

Author(s):  
Andrew McKenzie ◽  
Nektaria Papadopoulou ◽  
Simon Jiang ◽  
Martin Page ◽  
Henry Li ◽  
...  
2021 ◽  
Author(s):  
Xiaoxing Wen ◽  
TingTing Zhang ◽  
Tao Feng ◽  
Bingping Wang ◽  
Tao Fang

Abstract Background: Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) achieves remarkable success in the treatment of patients with advanced non-small cell lung cancer (NSCLC) bearing activating EGFR mutations. However, EGFR-TKI resistance is still a obstacles in the clinical practice. TRAF1 as a member of TRAF family participates NSCLC progression. In our previous research found that TRAF1 played an important role in the progression of NSCLC.Methods: In vivo and vitro, quantitative PCR (qPCR) and western blot (WB) were carried out to check the expression of TRAF1 in gefitinib-sensitive and -resistant NSCLC samples. The cell counting kit-8 (CCK8) and flow cytometry were used to measure cell proliferation, apoptosis and cycle arrest.Results: Here we showed that TRAF1 over-expression is associated with clinical resistance to EGFR TKI. TRAF1 was significantly up-regulated in gefitinib-resistant cells. Knockdown of TRAF1 increased the sensitivity of gefitinib-resistant cell. Knockdown of TRAF1 induced cell apoptosis and cell cycle arrest. Conclusions: Therefore, our results highlight the function of TRAF1 in the EGFT-TKI resistance.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Friedman ◽  
Carmen Corciulo ◽  
Cristina M. Castro ◽  
Bruce N. Cronstein

AbstractAutophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii231-ii231
Author(s):  
Rachael Vaubel ◽  
Ann Mladek ◽  
Yu Zhao ◽  
Shiv K Gupta ◽  
Minjee Kim ◽  
...  

Abstract Non-genotoxic reactivation of p53 by MDM2 inhibitors represents a promising therapeutic strategy for tumors with wild-type TP53, particularly tumors harboring MDM2 amplification. MDM2 controls p53 levels by targeting it for degradation, while disruption of the MDM2-p53 interaction causes rapid accumulation of p53 and activation of the p53 pathway. We examined the efficacy of the small molecule MDM2 inhibitor KRT-232, alone and in combination with radiation therapy (RT), in MDM2-amplified and/or p53 wildtype patient-derived xenograft (PDX) models of glioblastoma in vitro and in vivo. In vitro, glioblastoma PDX explant cultures showed sensitivity to KRT-232, both tumors with MDM2 amplification (GBM108 and G148) and non-amplified but TP53-wildtype lines (GBM10, GBM14, and GBM39), with IC50s ranging from 300-800 nM in FBS culture conditions. A TP53 p.F270C mutant PDX (GBM43) was inherently resistant, with IC50 >3000 nM. In the MDM2-amplified GBM108 line, KRT-232 led to a robust (5-6 fold) induction of p53-target genes p21, PUMA, and NOXA, with initiation of both apoptosis and senescence. Expression of p21 and PUMA was greater with KRT-232 in combination with RT (25-35 fold induction), while stable knock-down of p53 in GBM108 led to complete resistance to KRT-232. In contrast, GBM10 showed lower induction of p21 and PUMA (2-3 fold) and was more resistant to KRT-232. In an orthotopic GBM108 xenograft model, treatment with KRT-232 +/- RT for one week extended survival from 22 days (placebo) to 46 days (KRT-232 alone); combination KRT-232 + RT further extended survival (77 days) over RT alone (31 days). KRT-232 is an effective treatment in a subset of glioblastoma pre-clinical models alone and in combination with RT. Further studies are underway to understand the mechanisms conferring innate sensitivity or resistance to KRT-232.


Sign in / Sign up

Export Citation Format

Share Document