Abstract SP116: B-cells and follicular T cells regulate responses to immune checkpoint inhibitors in breast tumors and melanomas

Author(s):  
C Perou
2020 ◽  
Author(s):  
Daniele Biasci ◽  
James Thaventhiran ◽  
Simon Tavaré

While the role of CD8+ T cells in mediating response to cancer immunotherapy is well established, the role of B cells remains more controversial (1–3). By conducting a large gene expression study of response to immune checkpoint inhibitors (ICI), we show that pre-treatment expression of B cell genes is associated with ICI response independently of CD8+ T cells. However, we discovered that such association can be completely explained by a single gene (FDCSP) expressed outside of the B cell compartment, in fibroblastic reticular cells (FRCs), which form the reticular network that facilitates interactions between B cells, T cells and cognate antigens (4–6) and are required to initiate efficient adaptive immune responses in secondary lymphoid organs (SLO) and tertiary lymphoid structures (TLS) (4, 7). We validated this finding in three independent cohorts of patients treated with ICI in melanoma and renal cell carcinoma. Taken together, these results suggest that FDCSP is an independent predictor of ICI response, thus opening new avenues to explain the mechanisms of resistance to cancer immunotherapy.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


2021 ◽  
Vol 22 (10) ◽  
pp. 5207
Author(s):  
Chi Yan ◽  
Jinming Yang ◽  
Nabil Saleh ◽  
Sheau-Chiann Chen ◽  
Gregory D. Ayers ◽  
...  

Objectives: Inhibition of the PI3K/mTOR pathway suppresses breast cancer (BC) growth, enhances anti-tumor immune responses, and works synergistically with immune checkpoint inhibitors (ICI). The objective here was to identify a subclass of PI3K inhibitors that, when combined with paclitaxel, is effective in enhancing response to ICI. Methods: C57BL/6 mice were orthotopically implanted with syngeneic luminal/triple-negative-like PyMT cells exhibiting high endogenous PI3K activity. Tumor growth in response to treatment with anti-PD-1 + anti-CTLA-4 (ICI), paclitaxel (PTX), and either the PI3Kα-specific inhibitor alpelisib, the pan-PI3K inhibitor copanlisib, or the broad spectrum PI3K/mTOR inhibitor gedatolisib was evaluated in reference to monotherapy or combinations of these therapies. Effects of these therapeutics on intratumoral immune populations were determined by multicolor FACS. Results: Treatment with alpelisib + PTX inhibited PyMT tumor growth and increased tumor-infiltrating granulocytes but did not significantly affect the number of tumor-infiltrating CD8+ T cells and did not synergize with ICI. Copanlisib + PTX + ICI significantly inhibited PyMT growth and increased activation of intratumoral CD8+ T cells as compared to ICI alone, yet did not inhibit tumor growth more than ICI alone. In contrast, gedatolisib + ICI resulted in significantly greater inhibition of tumor growth compared to ICI alone and induced durable dendritic-cell, CD8+ T-cell, and NK-cell responses. Adding PTX to this regimen yielded complete regression in 60% of tumors. Conclusion: PI3K/mTOR inhibition plus PTX heightens response to ICI and may provide a viable therapeutic approach for treatment of metastatic BC.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi93-vi93
Author(s):  
Stephanie Sanders ◽  
Denise Herpai ◽  
Waldemar Debinski

Abstract Glioblastoma (GBM) is an immunologically cold tumor. Using single cell sequencing of CD45+ cells we confirmed that T cells are present within GBM samples. These T cells are positive for exhaustion markers such as LAG3 and TIGIT, as well as CTLA4 and PD1 checkpoint receptors. Modulating T cell activity through use of immune checkpoint inhibitors (ICIs) has shown efficacy in the treatment of a variety of solid tumors, and the combination of anti-CTLA4 and anti-PD1 ICIs has shown increased efficacy over use of a single therapeutic. Additionally, targeting ICIs to the tumor cells may increase efficacy of this treatment. We therefore constructed a combinatorial ICI redirected to GBM via interleukin 13 receptor alpha 2 (IL13RA2), a receptor over-expressed on the majority of GBM cells but not normal brain. The first component of the construct, labeled with a histidine tag, targets CTLA4 while the second component, tagged with a StrepII tag, targets PD1. The tags added to the constructs will allow for purification of a combinatorial heterodimer simultaneously targeting PD1, CTLA4 and IL13RA2. We purified individual components via fast protein liquid chromatography (FPLC) using a proteinG column followed by a HisTrap or StrepTrap column. We obtained a recombinant, targeted multivalent ICI at > 95% purity. We found that these constructs are able to bind their target receptors via ELISA in which the Kd values ranged from picomolar to low nanomolar range. Additionally, our constructs bind their target on live cells by flow cytometry. We next designed a heterodimeric construct which can combinatorially target CTLA4 and PD1 while also directing the ICI therapy to GBM. These constructs in conjunction with other immune stimulants like cytotoxic therapies are intended to facilitate the interaction between T cells and GBM tumor cells directly in a tumor microenvironment.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A570-A570
Author(s):  
Chen Zhao ◽  
Matthew Mule ◽  
Andrew Martins ◽  
Iago Pinal Fernandez ◽  
Renee Donahue ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) have changed the cancer treatment landscape, but immune-related adverse events (irAEs) can affect a wide range of tissues in patients receiving ICIs. Severe irAEs can be life-threatening or fatal and prohibit patients from receiving further ICI treatment. While the clinical features of irAEs are well documented, the pathological mechanisms and predictive biomarkers are largely unknown. In addition, there is a critical need to preserve ICI-induced anti-tumor immunity while controlling for irAEs, which requires deciphering molecular and cellular signatures associated specifically with irAEs beyond those more generally linked to anti-tumor immunity.MethodsTo unbiasedly identify immune cells and states associated with irAEs, we applied CITE-seq to measure transcripts and surface proteins (83 protein markers) from PBMCs collected from patients with thymic epithelial tumors before and after treatment with an anti-PD-L1 antibody (avelumab, NCT01772004, NCT03076554).ResultsSamples from 9 patients were analyzed. No patient had a history of pre-existing paraneoplastic autoimmune disease. Anti-tumor activity was observed in all cases, and 5 patients had clinical and/or biochemical evidence of immune-related muscle inflammation (myositis with or without myocarditis). Multilevel models applied within highly resolved cell clusters revealed transcriptional states associated with ICI response and more uniquely with irAEs. A total of 190,000 cells were included in the analysis after quality control. Most notably, CD45RA+ effector memory CD8 T cells with an mTOR transcriptional signature were highly enriched at baseline and post treatment in patients with irAEs.ConclusionsOur findings suggest the potential therapeutic avenues by using mTOR inhibitors to dampen autoimmune responses while potentially sparing anti-tumor activity, to prevent treatment discontinuation and improve clinical outcomes for cancer patients treated with ICIs.AcknowledgementsThis research was supported in part by the Intramural Research Program of the NCI (the Center for Cancer Research), NIAID and NIAMS, and through a Cooperative Research and Development Agreement between the National Cancer Institute and EMD Serono.Trial RegistrationNCT01772004, NCT03076554Ethics ApprovalThis study is approved by NCI institutional review board.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 738 ◽  
Author(s):  
Raju K. Vaddepally ◽  
Prakash Kharel ◽  
Ramesh Pandey ◽  
Rohan Garje ◽  
Abhinav B. Chandra

Cancer is associated with higher morbidity and mortality and is the second leading cause of death in the US. Further, in some nations, cancer has overtaken heart disease as the leading cause of mortality. Identification of molecular mechanisms by which cancerous cells evade T cell-mediated cytotoxic damage has led to the modern era of immunotherapy in cancer treatment. Agents that release these immune brakes have shown activity to recover dysfunctional T cells and regress various cancer. Both cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and Programmed Death-1 (PD-1) play their role as physiologic brakes on unrestrained cytotoxic T effector function. CTLA-4 (CD 152) is a B7/CD28 family; it mediates immunosuppression by indirectly diminishing signaling through the co-stimulatory receptor CD28. Ipilimumab is the first and only FDA-approved CTLA-4 inhibitor; PD-1 is an inhibitory transmembrane protein expressed on T cells, B cells, Natural Killer cells (NKs), and Myeloid-Derived Suppressor Cells (MDSCs). Programmed Death-Ligand 1 (PD-L1) is expressed on the surface of multiple tissue types, including many tumor cells and hematopoietic cells. PD-L2 is more restricted to hematopoietic cells. Blockade of the PD-1 /PDL-1 pathway can enhance anti-tumor T cell reactivity and promotes immune control over the cancerous cells. Since the FDA approval of ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody) in 2011, six more immune checkpoint inhibitors (ICIs) have been approved for cancer therapy. PD-1 inhibitors nivolumab, pembrolizumab, cemiplimab and PD-L1 inhibitors atezolizumab, avelumab, and durvalumab are in the current list of the approved agents in addition to ipilimumab. In this review paper, we discuss the role of each immune checkpoint inhibitor (ICI), the landmark trials which led to their FDA approval, and the strength of the evidence per National Comprehensive Cancer Network (NCCN), which is broadly utilized by medical oncologists and hematologists in their daily practice.


2019 ◽  
Vol 37 (4_suppl) ◽  
pp. TPS178-TPS178
Author(s):  
Yukiya Narita ◽  
Hirokazu Shoji ◽  
Sadayuki Kawai ◽  
Takuro Mizukami ◽  
Michio Nakamura ◽  
...  

TPS178 Background: Immune checkpoint inhibitors are drugs that block specific proteins produced by the immune system cells, such as T-cells; these proteins prevent T-cells from killing cancer cells. NIV is a standard care for pretreated mGC patients (pts), with increasing clinical use in Japan. Data from retrospective studies on various tumors have shown that after exposure to immune checkpoint inhibitors, the objective response rate to CTx potentially improves; however, enough data have not been accumulated. Although there are no recommended CTx regimen following NIV therapy, in a clinical setting, an irinotecan or oxaliplatin combination regimen (limited to cisplatin-refractory or cisplatin-intolerant pts) is frequently used as post-NIV CTx. This multicenter observational study aims to evaluate the efficacy and safety of CTx in NIV-refractory or NIV-intolerant mGC pts. Methods: We prospectively collect clinical and imaging data from NIV-pretreated mGC pts; these pts will be treated with cytotoxic agents. Pts who meet inclusion criteria A (histologically proven mGC pretreated with NIV, prior administration of a combination therapy of fluoropyrimidine plus platinum and taxanes, and written informed consent) at primary registration are registered. After primary registration, pts who meet inclusion criteria B [Eastern Cooperative Oncology Group Performance Status (ECOG PS 0-2), refractory or intolerant to NIV; prior administration of irinotecan monotherapy or oxaliplatin combination regimens and prior use of cisplatin; evaluable lesions according to RECIST ver. 1.1] at formal registration are registered. The primary endpoint is overall survival of NIV-pretreated mGC pts after CTx. For this study, we require 146 pts, with bilateral alpha = 0.05 and beta = 0.10, with a median threshold survival of 4.0 months and an expected median survival of 6.0 months. Therefore, we plan to enroll 200 pts, considering exclusions from the analysis; since May 2018, we have enrolled 27 pts. Clinical trial information: UMIN000032182.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liting Xue ◽  
Xingyuan Gao ◽  
Haoyu Zhang ◽  
Jianxing Tang ◽  
Qian Wang ◽  
...  

Abstract Background Signaling through VEGF/VEGFR induces cancer angiogenesis and affects immune cells. An increasing number of studies have recently focused on combining anti-VEGF/VEGFR agents and immune checkpoint inhibitors (ICIs) to treat cancer in preclinical and clinical settings. BD0801 is a humanized rabbit anti-VEGF monoclonal antibody in the clinical development stage. Methods In this study, the anti-cancer activities of BD0801 and its potential synergistic anti-tumor effects when combined with different immunotherapies were assessed by using in vitro assays and in vivo tumor models. Ex vivo studies were conducted to reveal the possible mechanisms of actions (MOA) underlying the tumor microenvironment modification. Results BD0801 showed more potent antitumor activity than bevacizumab, reflected by stronger blockade of VEGF/VEGFR binding and enhanced inhibitory effects on human umbilical vein endothelial cells (HUVECs). BD0801 exhibited dose-dependent tumor growth inhibitory activities in xenograft and murine syngeneic tumor models. Notably, combining BD0801 with either anti-PD-1 or anti-PD-L1 antibodies showed synergistic antitumor efficacy in both lung and colorectal cancer mouse models. Furthermore, the mechanistic studies suggested that the MOA of the antitumor synergy involves improved tumor vasculature normalization and enhanced T-cell mediated immunity, including increased tumor infiltration of CD8+ and CD4+ T cells and reduced double-positive CD8+PD-1+ T cells. Conclusions These data provide a solid rationale for combining antiangiogenic agents with immunotherapy for cancer treatment and support further clinical development of BD0801 in combination with ICIs.


2016 ◽  
Vol 33 (4) ◽  
pp. 237-246 ◽  
Author(s):  
Ana Cvetanović ◽  
Slađana Filipović ◽  
Nikola Živković ◽  
Miloš Kostić ◽  
Svetislav Vrbić ◽  
...  

SummaryIn recent years, results obtained from different studies with large cohorts have revealed a bond between the presence of extensive lymphocytic infiltration and favourable prognostic associations in the early-stage of breast cancer (BC) and high response rates to neoadjuvant chemotherapy. Examiners used tumors from large cohorts of patients who took part in randomized neoadjuvant and adjuvant clinical trials. The importance of tumor infiltrating lymphocytes (TILs) appears to be subtype-specific and varies depending on the histological characteristics of the tumor. TILs have proven to be a good prognostic marker, but only in highly proliferative breast tumors such as triple negative breast tumors (TNBC) or HER 2 positive BC.In the era when standard, well-known, prognostic and predictive biomarkers are ever changing and the use of molecular profiling analyses are increasing, we are looking for techniques to improve our understanding of tumor biology and improve patient outcome. The relevance of TILs cannot be ignored but needs to be properly evaluated in larger prospective studies which must encompass the parameters set out in previous studies. The use of TILs as prognostic biomarkers in early breast cancer may represent a new dawn, and use of immunotherapy, especially immune checkpoint inhibitors, probably is the future for the breast cancer but it is not yet ready for prime time.


Sign in / Sign up

Export Citation Format

Share Document