scholarly journals Secreted Factors from Adipose Tissue Reprogram Tumor Lipid Metabolism and Induce Motility by Modulating PPARα/ANGPTL4 and FAK

2020 ◽  
Vol 18 (12) ◽  
pp. 1849-1862 ◽  
Author(s):  
Christina Blücher ◽  
Sabine Iberl ◽  
Nancy Schwagarus ◽  
Silvana Müller ◽  
Gerhard Liebisch ◽  
...  
2005 ◽  
Vol 33 (5) ◽  
pp. 1059-1062 ◽  
Author(s):  
S. Kersten

Regulation of mammalian energy metabolism is an intricate process involving numerous hormones, transcription factors and signal transduction cascades. Much of the regulation occurs via secreted factors that relay information from one organ to another. One group of secreted factors that recently emerged as having a major impact on lipid and possibly glucose metabolism are the ANGPTLs (angiopoietin-like proteins). This includes ANGPTL3, ANGPTL4/FIAF (fasting-induced adipose factor), and ANGPTL6/AGF (angiopoietin-related growth factor). Although the receptors for these proteins have yet to be identified, it is nevertheless increasingly clear that these proteins have important effects on plasma triacylglycerol clearance, adipose tissue lipolysis, and adiposity. This review summarizes contemporary data on ANGPTLs with emphasis on the connection with energy metabolism.


2020 ◽  
Author(s):  
G Lenihan-Geels ◽  
F Garcia-Carrizo ◽  
C Li ◽  
M Oster ◽  
A Prokesch ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


2021 ◽  
Vol 331 ◽  
pp. e4
Author(s):  
B.E. Suur ◽  
M. Chemaly ◽  
H. Jin ◽  
M. Kronqvist ◽  
M. Lengquist ◽  
...  

2011 ◽  
Vol 96 (7) ◽  
pp. E1188-E1196 ◽  
Author(s):  
Jing Ting Zhao ◽  
Mark J. Cowley ◽  
Paul Lee ◽  
Vita Birzniece ◽  
Warren Kaplan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document