Abstract PO068: Distinct immune signatures predicting clinical response to PD-1 blockade therapy in gynecological cancers revealed by high-dimensional immune profiling

Author(s):  
Yuki Muroyama ◽  
Sasikanth Manne ◽  
Alexander C. Huang ◽  
Divij Mathew ◽  
Lakshmi Chilukuri ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A200-A200
Author(s):  
Yuki Muroyama ◽  
Yuki Muroyama ◽  
Sasikanth Manne ◽  
Alexandar Huang ◽  
Divij Mathew ◽  
...  

BackgroundAlthough immune checkpoint blockade revolutionized cancer therapy, response rates have been mixed in gynecological malignancies. While uterine endometrial cancer with high microsatellite instability (MSIHI) and high tumor mutational burden (TMB) respond robustly to checkpoint blockade, high-grade serous ovarian cancer (HGSOC) with low TMB respond modestly. Currently, there has been no known immune signature or T cell phenotype that predicts clinical response in gynecological tumors.MethodsTo dissect the immune landscape and T cell phenotypes in gynecological cancer patients receiving PD-1 blockade, we used high-dimensional cytometry (flow cytometry and mass cytometry (CyTOF)). We performed longitudinal deep immune profiling of PBMC from patients with recurrent uterine endometrial cancer receiving single-arm nivolumab, and HSGOC patients receiving neoadjuvant nivolumab plus platinum-based chemotherapy prior to debulking surgery.ResultsChemotherapy-resistant MSI-H uterine cancer patients treated with nivolumab had a proliferative T cell response 2–4 weeks post PD-1 blockade, consistent with responses seen in high TMB melanoma and lung cancer. The responding Ki67+ CD8 T cell population was largely CD45RAloCD27hi or CD45RAloCD27lo and highly expressed PD1, CTLA-4, and CD39, consistent with the phenotype of exhausted T cells (TEX). These exhausted-like cells are enriched in responders, whereas early expansion Tregs are enriched in non-responders. Unlike patients with uterine endometrial cancer, patients with TMBlo ovarian cancer did not have a clear proliferative CD8 T cell response after neoadjuvant nivolumab plus chemotherapy treatment, suggesting systemic immune suppression. At baseline, ovarian cancer without recurrence have more terminally differentiated effector-like CD8 T cells, and patients with recurrence have more naive-like cells. Thus, both high and low TMB gynecological tumors have distinct immune landscapes associated with clinical response. Additionally, in MSI-H uterine endometrial cancer patients, the length of time between the prior chemotherapy and the initiation of immunotherapy was negatively correlated with T cell reinvigoration post immunotherapy and clinical response. This suggests the importance of optimize therapeutic timing to maximize the therapeutic efficacy when combining immunotherapy and chemotherapy.ConclusionsCollectively, our immune profiling revealed the distinct immune signatures associated with clinical response to PD-1 blockade in gynecological cancers. Our results also suggest that TMBhi inflamed versus TMBlo cold tumor microenvironment, and timing of chemo/immunotherapy could impact differentiation and functions of T cells.Ethics ApprovalThe study was approved by MSKCC Ethics Board, approval number 17–180 and 17–182.


2021 ◽  
Author(s):  
Run-Ze Li ◽  
Xing-Xing Fan ◽  
Ze-Bo Jiang ◽  
Jumin Huang ◽  
Hu-Dan Pan ◽  
...  

Abstract The response to immunotherapy could be better predicted by using a wide set of biomarkers, including serum tumor markers; however, robust immune markers associated with efficacy have yet to be validated. In this study, changes in immune cell subsets from NSCLC patients treated with anti-PD1 therapy were longitudinally monitored by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines kits. The frequencies of circulating CD8+ and CD8+CD101hiTIM3+ (CCT T) subsets were significantly correlated with clinical response and survival. Enrichment of these populations in peripheral blood mononuclear cells (PBMCs) indicated a poor clinical response to ICB therapy. Cell function assays revealed that these subsets were remarkably impaired, which supported the poor outcomes observed. Additionally, longitudinal analysis showed that KLRG1 expression and cytokines were associated with the response to therapy. Overall, our results provide novel potential biomarkers for guiding the management of NSCLC patients eligible to anti-PD-1 therapy, and contribute insights for new therapeutic strategies.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
April E. Mendoza ◽  
Susan Raju Paul ◽  
Majed El Hechi ◽  
Leon Naar ◽  
Charlie Nederpelt ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. e000363 ◽  
Author(s):  
Samuel Chuah ◽  
Valerie Chew

Immunotherapy is a rapidly growing field for cancer treatment. In contrast to conventional cancer therapies, immunotherapeutic strategies focus on reactivating the immune system to mount an antitumor response. Despite the encouraging outcome in clinical trials, a large proportion of patients still do not respond to treatment and many experience different degrees of immune-related adverse events. Furthermore, it is now increasingly appreciated that even many conventional cancer therapies such as radiotherapy could have a positive impact on the host immune system for better clinical response. Hence, there is a need to better understand tumor immunity in order to design immunotherapeutic strategies, especially evidence-based combination therapies, for improved clinical outcomes. With this aim, cancer research turned its attention to profiling the immune contexture of either the tumor microenvironment (TME) or peripheral blood to uncover mechanisms and biomarkers which might aid in precision immunotherapeutics. Conventional technologies used for this purpose were limited by the depth and dimensionality of the data. Advances in newer techniques have, however, greatly improved the breadth and depth, as well as the quantity and quality of data that can be obtained. The result of these advances is a wealth of new information and insights on how the TME could be affected by various immune cell-types, and how this might in turn impact the clinical outcome of cancer patients . We highlight herein some of the high-dimensional technologies currently employed in immune profiling in cancer and summarize the insights and potential benefits they could bring in designing better cancer immunotherapies.


2015 ◽  
Vol 9 (1) ◽  
pp. 68-82 ◽  
Author(s):  
N Nair ◽  
E W Newell ◽  
C Vollmers ◽  
S R Quake ◽  
J M Morton ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2607-2607
Author(s):  
David Roumanes ◽  
Evan Newell ◽  
Michael Fehlings

2607 Background: Immunotherapy recent successes have opened new avenues for the treatment of cancer and the presence of tumor-specific CD8+ T cells in tumor-bearing individuals offer a promising therapeutic target. However, the detection and profiling of such T cells are challenging due to the need to detect rare antigen-specific T cell subpopulations in patient samples that are limited in size thus making it difficult to exploit these parameters for predictive signatures of clinical response. Moreover, the identification and analysis of neoantigen-specific CD8+ T-cells in tumor-bearing individuals is challenging due to the small pool of such cells. Methods: In order to identify therapy-relevant tumor antigens and to facilitate a concurrent in-depth characterization of cells directed towards these targets, immunoSCAPE leverages the high-dimensional immune profiling capabilities of cytometry by time of flight (CyTOF) combined with a unique technology allowing the identification rare antigen-specific T-cell subsets. Results: We applied this technology to patient tumor-infiltrating lymphocytes from human cancer samples and tumor-derived neoantigens recognized by T-cells were identified and characterized. Interestingly, the majority of patient-derived tumor infiltrates consisted of tumor-unrelated T-cells characterized by a diverse phenotype. Strikingly, the expression of CD39 was absent from these bystander cells, suggesting that CD39 could be a useful biomarker for the identification of putative tumor-reactive T cells. Conclusions: Simultaneous immune profiling revealed that tumor-unrelated, bystander CD8+ T-cells are phenotypically different in human tumor infiltrates and identified CD39 as a putative marker of neoantigen-specific T-cells. By providing insights into the nature, frequency and phenotype of antigen-specific T-cells, immunoSCAPE’s unique target discovery and high-dimensional immune profiling platform is a valuable tool for the development of novel diagnostic and therapeutic strategies in immunotherapy.


Author(s):  
James W. Opzoomer ◽  
Jessica Timms ◽  
Kevin Blighe ◽  
Thanos P. Mourikis ◽  
Nicolas Chapuis ◽  
...  

AbstractHigh dimensional cytometry is an innovative tool for immune monitoring in health and disease, it has provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. However, the analysis of multiparametric “big data” usually requires specialist computational knowledge. Here we describe ImmunoCluster (https://github.com/kordastilab/ImmunoCluster) an R package for immune profiling cellular heterogeneity in high dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate computational analysis by a non-specialist. The analysis framework implemented within ImmunoCluster is readily scalable to millions of cells and provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that can be tailored to users’ needs. The protocol consists of three core computational stages: 1, data import and quality control, 2, dimensionality reduction and unsupervised clustering; and 3, annotation and differential testing, all contained within an R-based open-source framework.


2016 ◽  
Vol 198 (2) ◽  
pp. 927-936 ◽  
Author(s):  
Kilian Wistuba-Hamprecht ◽  
Alexander Martens ◽  
Benjamin Weide ◽  
Karen Wei Weng Teng ◽  
Henning Zelba ◽  
...  

2020 ◽  
Vol 5 (51) ◽  
pp. eabd6197 ◽  
Author(s):  
Elizabeth R. Mann ◽  
Madhvi Menon ◽  
Sean Blandin Knight ◽  
Joanne E. Konkel ◽  
Christopher Jagger ◽  
...  

COVID-19 pathogenesis is associated with an exaggerated immune response. However, the specific cellular mediators and inflammatory components driving diverse clinical disease outcomes remain poorly understood. We undertook longitudinal immune profiling on both whole blood and peripheral blood mononuclear cells (PBMCs) of hospitalized patients during the peak of the COVID-19 pandemic in the UK. Here, we report key immune signatures present shortly after hospital admission that were associated with the severity of COVID-19. Immune signatures were related to shifts in neutrophil to T cell ratio, elevated serum IL-6, MCP-1 and IP-10, and most strikingly, modulation of CD14+ monocyte phenotype and function. Modified features of CD14+ monocytes included poor induction of the prostaglandin-producing enzyme, COX-2, as well as enhanced expression of the cell cycle marker Ki-67. Longitudinal analysis revealed reversion of some immune features back to the healthy median level in patients with a good eventual outcome. These findings identify previously unappreciated alterations in the innate immune compartment of COVID-19 patients and lend support to the idea that therapeutic strategies targeting release of myeloid cells from bone marrow should be considered in this disease. Moreover, they demonstrate that features of an exaggerated immune response are present early after hospital admission suggesting immune-modulating therapies would be most beneficial at early timepoints.


Sign in / Sign up

Export Citation Format

Share Document