scholarly journals An Atypical Initial Presentation of Chronic Myeloid Leukemia with Central Nervous System and Lymph Node Blast Crises

2016 ◽  
Vol 9 (2) ◽  
pp. 415-421 ◽  
Author(s):  
Khadega A. Abuelgasim ◽  
Saeed Alshieban ◽  
Nada A. Almubayi ◽  
Ayman Alhejazi ◽  
Abdulrahman R. Jazieh

We describe the case of a young man with therapy-naive chronic myeloid leukemia who did not initially have any peripheral blood or bone marrow excess blasts but presented with extramedullary myeloid blast crises involving the central nervous system and multiple lymph nodes. Conventional cytogenetic tests were positive for t(9;22)(q34:q11) as well as for trisomy 8, 14 and 21 and del(16q). The patient’s peripheral blood and bone marrow were positive for the BCR-ABL oncogene when analyzed by fluorescence in situ hybridization and polymerase chain reaction. He achieved good clinical, radiological, cytogenetic and molecular response to acute myeloid leukemia induction chemotherapy combined with 16 doses of triple intrathecal chemotherapy and oral dasatinib (second-generation tyrosine kinase inhibitor) treatment. Due to his poor general condition, he was treated with 24 Gy of whole-brain radiation therapy, as allogeneic stem cell transplantation was not feasible. Although extramedullary CNS blast crises are usually associated with a very poor outcome, our patient remains in complete cytogenetic and molecular remission, on single-agent dasatinib, 4 years after the diagnosis with no current evidence of active extramedullary disease. This suggests that dasatinib has a role in controlling not only chronic-phase chronic myeloid leukemia, but also its CNS blast crisis.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2592-2592
Author(s):  
Giovanna Rege-Cambrin ◽  
Carmen Fava ◽  
Enrico Gottardi ◽  
Filomena Daraio ◽  
Emilia Giugliano ◽  
...  

Abstract Background Consensus has been achieved that standardized molecular quantitative analysis (RQ-PCR) on peripheral blood (PB) is a suitable method for monitoring residual disease in chronic myeloid leukemia (CML). However, BM is still obtained at specific timepoints, and in a number of cases, only bone marrow (BM) sample collected for cytogenetic analysis is available. Being one of the laboratory involved in the standardization process of molecular monitoring for CML patients, we decided to perform a comparative analysis of BM and PB samples in order to evaluate the consistency of the results. Methods Between March 2009 and January 2013, 230 consecutive RQ-PCR tests to assess BCR-ABL transcript levels from simultaneously collected PB and BM samples were performed (for a total of 460 analysis) on 77 patients affected by Ph+ CML in chronic phase treated in our center. All samples were analyzed in the same laboratory following international guidelines (Cross N, Leukemia 2012) and results were expressed according to the International Scale; ABL1 was used as control gene. Time from blood-drawn to processing was within 3-4 hours. Results Among the 230 pairs, 3 were considered as not evaluable because of inadequate material; for the purpose of this study, the remaining 227 pairs were considered as “evaluable”. 204 pairs were classified as “fit” when both BM and PB ABL amplification resulted in more than 10.000 copies; 23 pairs were considered unfit for ABL1 <10.000 in either one of the two samples (21) or both (2). The mean number of ABL1 copies in all evaluable samples was 35.639 for BM (SD 21.465) and 30.958 for PB samples (SD 18.696). Correlation analysis was performed on the whole population and in 4 subgroups: No Complete Cytogenetic Response (CCyR, 22%), CCyR without Major Molecular Response (MMR), (21.6%), CCyR with MMR (excluding patients with MR4 or better,19.8%), and CCyR with MR4 – MR4.5 (32,6%). Cytogenetic response was not available in 9 BM samples (4%), not included in the subgroup analysis. Spearman correlation of BCR/ABL ratio values between PB versus BM paired samples resulted in a statistically significant correlation in all groups, both for evaluable and fit pairs. Correlation was stronger in samples that were not in MMR or better (table 1 and figure 1). The Wilcoxon test showed that the mean difference of BCR/ABL values between paired PB and BM samples was not significantly different from zero (in evaluable and fit pairs by considering the whole population). Concordance was further analyzed by the K test which resulted in a coefficient equal to 0.627, corresponding to a notable degree of concordance. For patients in CCyR, agreement on classification of response (MMR, MR4, MR4.5) between paired PB and BM samples was observed in 125/168 evaluable pairs; 22 out of the 43 evaluable cases of disagreement were due to technical failures (in 10 BM and 12 PB samples). In 14 of the remaining 21 cases, PB was more sensitive. Conclusions In a single center experience of molecular analysis, BCR/ABL ratio was highly consistent in BM and PB samples. In less than 10% of the cases a single test did not reach the required sensitivity of 10.000 ABL copies and the double testing allowed to obtain a valid result. This may be especially valuable in evaluating an early response (i.e. at 3 months), when the amount of disease has prognostic relevance. The analysis will be expanded to include samples coming from different centers to evaluate a possible role of timing and transport on data consistency. Disclosures: Saglio: Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria; Celgene: Consultancy, Honoraria.


2018 ◽  
Vol 140 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Fiorina Giona ◽  
Michelina Santopietro ◽  
Giuseppe Menna ◽  
Maria Caterina Putti ◽  
Concetta Micalizzi ◽  
...  

Background: To date, no data on the adherence to specific guidelines for children with chronic myeloid leukemia (CML) in chronic phase (CP) have been reported. Methods: Since 2001, guidelines for treatment with imatinib mesylate (IM) and monitoring in patients younger than 18 years with CP-CML have been shared with 9 pediatric referral centers (P centers) and 4 reference centers for adults and children/adolescents (AP centers) in Italy. In this study, the adherence to these guidelines was analyzed. Results: Thirty-four patients with a median age of 11.4 years and 23 patients with a median age of 11.0 years were managed at 9 P and at 4 AP centers, respectively. Evaluations of bone marrow (BM) and/or peripheral blood (PB) were available for more than 90% of evaluable patients. Cytogenetics and molecular monitoring of PB were more consistently performed in AP centers, whereas molecular analysis of BM was carried out more frequently in P centers. Before 2009, some patients who responded to IM underwent a transplantation, contrary to the guidelines’ recommendations. Conclusions: Our experience shows that having specific guidelines is an important tool for an optimal management of childhood CP-CML, together with exchange of knowledge and proactive discussions within the network.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5515-5515
Author(s):  
Nicola Sgherza ◽  
Vito Garrisi ◽  
Giacoma De Tullio ◽  
Simona Serratì ◽  
Angela Iacobazzi ◽  
...  

Abstract BACKGROUND. Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm characterized by an aberrant protein (BCR–ABL) which is a constitutively active tyrosine kinase. According to the latest ELN recommendations for the management of CML, molecular response (MR) is best assessed according to the International Scale (IS) as the ratio of BCR-ABL1 transcripts to ABL1 transcripts, or other internationally recognized control transcripts. It is expressed and reported as BCR-ABL1% on a log scale where 10%, 1%, 0.1%, 0.01%, 0.0032%, and 0.001% correspond to a decrease of respectively 1 (MR1), 2 (MR2), 3 (MR3), 4 (MR4), 4.5 (MR4.5) logs below the standard baseline that was used in the IRIS study. Recent advances in the proteomic field have allowed us to better understand the biology of several cancer types and/or discover new candidate biomarkers, but very few data are available in CML. AIMS. The purpose of this study was to evaluate a possible correlation between depth of MR and proteomic profile in sera samples obtained from the peripheral blood and bone marrow of CML patients. PATIENTS AND METHODS Samples were consecutively and prospectively obtained from 20 CML patients observed between January and June 2014 at the Hematology Unit of the National Cancer Research Centre “Istituto Tumori Giovanni Paolo II” in Bari, Italy. Each individual involved in the study signed an informed consent form authorizing the Institute to utilize their biological tissues for research purposes. All patients at diagnosis displayed the classic t(9;22) Ph chromosome according to standard cytogenetics. The BCR/ABL transcript at RT-PCR was b3a2 in 13 patients and b2a2 in 7 patients. Peripheral blood and bone marrow samples were centrifuged within 30 minutes of sample taking. Serum specimens were immediately collected and frozen at −80°C. Twenty sera from peripheral blood were sampled from 5 patients in MR1 response, four in MR2, eight in MR3, two in MR4 and 1 patient at diagnosis; for eleven patients serum from bone marrow was also available; in particular 2 were sampled from patients in MR1, 3 in MR2, 4 in MR3, 1 in MR4 and 1 at diagnosis. Patients were grouped in two cohorts: the first comprised those with lower molecular response to MR3 (group A: 10 patients) and the second greater than or equal to MR3 (group B: 10 patients). The association of proteomic profile with molecular response was performed using the SELDI ToF Mass Spectrometry platform. Each specimen was spotted on an IMAC30 metal affinity protein-chip, prepared according to the manufacturer's instructions, and analyzed in duplicate. RESULTS Fourteen differentially expressed peaks were highlighted when comparing peripheral sera from group A and group B, but none was statistically significant. When comparing 11 available serum samples from the bone marrow of groups A (6) and B (5), four peaks (m/z 10629, m/z 3889, m/z 7772, m/z 7987) were reported as differentially expressed in a statistically significant way (p<0.05). Focusing the differential expression analysis in peripheral sera only on MR1 patients (including one patient at diagnosis) versus MR4 patients, one peak at m/z 11092 was identified as significantly and differentially expressed (p < 0.05) (Figure 1). Similarly, comparing bone marrow sera only from MR1 and MR4 patients respectively, 32 peaks were differentially expressed. Once again the peak at m/z 11092 resulted under expressed in MR1 patients, and interestingly the single patient at diagnosis had the lowest value. No statistical differences were evidenced when comparing peripheral blood and bone marrow sera obtained from b3a2 and b2a2 patients. CONCLUSIONS These preliminary data suggest that an over-expression of m/z 11092 in serum obtained from peripheral blood and bone marrow could be associated with a deeper molecular response; further investigations are needed on a larger number of patients in order to confirm or refute our results and, to definitively characterize the peak at m/z 11092. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Danlin Yao ◽  
Ling Xu ◽  
Lian Liu ◽  
Xiangbo Zeng ◽  
Juan Zhong ◽  
...  

The antitumor activity of NK cells in patients with chronic myeloid leukemia (CML) is inhibited by the leukemia microenvironment. Recent studies have identified that the expression of TIGIT, CD57, and KLRG1 is related to the function, maturation, and antitumor capabilities of NK cells. However, the characteristics of the expression of these genes in the peripheral blood (PB) and bone marrow (BM) from patients with CML remain unknown. In this study, we used multicolor flow cytometry to assay the quantity and phenotypic changes of NK cells in PB and BM from de novo CML (DN-CML) and CML patients acquiring molecular response (MR-CML). We found that the expression of TIGIT, which inhibits NK cell function, is increased on CD56+ and CD56dim NK cells in DN-CML PB compared with those in healthy individuals (HIs), and it is restored to normal in patients who achieve MR. We also found that the expression of CD57 on NK cells was approximately the same level in PB and BM from DN-CML patients, while decreased CD57 expression was found on CD56+ and CD56dim NK cells in HI BM compared with PB. Additionally, those two subsets were significantly increased in DN-CML BM compared to HI BM. The expression of CD57 correlates with replicative senescence and maturity for human NK cells; therefore, the increase in TIGIT on PB NK cells together with an increase in CD57 on BM NK cells may explain the subdued NK cell antileukemia capacity and proliferative ability in DN-CML patients. These results indicate that reversing the immune suppression of PB NK cells by blocking TIGIT while improving the proliferation of BM NK cells via targeting CD57 may be more effective in removing tumor cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4672-4672
Author(s):  
Giovanni Martinelli ◽  
Gianantonio Rosti ◽  
Fabrizio Pane ◽  
Marilina Amabile ◽  
Simona Bassi ◽  
...  

Abstract Imatinib mesylate (STI571), a specific Bcr-Abl inhibitor, has shown a potent antileukemic activity in clinical studies of chronic myeloid leukemia (CML) patients. Early prediction of response to imatinib cannot be anticipated. We used a standardized quantitative reverse-transcriptase polymerase chain reaction (QRT-PCR) for bcr-abl transcripts on 191 out of 200 late-chronic phase CML patients enrolled in a phase II clinical trial with imatinib 400 mg/day. Bone marrow samples were collected before treatment, after 3, 6 and 12 months or at the end of study treatment (12 months) while peripheral blood samples were obtained after 2, 3, 6, 10, 14, 20 and 52 weeks of therapy. The amount of Bcr-Abl transcript was expressed as the ratio of Bcr-Abl to β2-microglobulin (β2M). We show that, following initiation of imatinib, the early Bcr-Abl level trends in both bone marrow and peripheral blood samples made it possible to predict the subsequent cytogenetic outcome after 6 and 12 months of treatment, and that these early trends were also predictive of progression-free survival.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4471-4471
Author(s):  
Jason N Berman ◽  
Wenda Greer ◽  
Ridas Juskevicius ◽  
Conrad V Fernandez ◽  
Mark Bernstein ◽  
...  

Abstract Abstract 4471 Chronic myeloid leukemia (CML) is associated with the reciprocal t(9;22)(q34;q11) translocation, which generates the BCR-ABL fusion oncogene and is the most common myeloproliferative disease affecting adults. The clinical outcome in this disease has been revolutionized with the use of imatinib mesylate (Gleevec), a targeted tyrosine kinase inhibitor, and molecular surveillance, with the development of quantitative PCR (qPCR) approaches to measure BCR-ABL transcript levels. A number of guidelines outlining follow-up strategies for patients with chronic phase CML on imatinib therapy have been established. Once a patient is stable, a typical recommendation includes peripheral blood (PB) monitoring by qPCR of BCR-ABL levels every 3–6 months to determine response or relapse, with consideration of annual bone marrow (BM) examinations to assess for cytogenetic evolution. At the Queen Elizabeth II Health Sciences Centre and IWK Health Centre in Halifax, Nova Scotia, 34 patients with chronic phase CML on imatinib were identified from 2006 to 2008, with 36 paired samples, where transcript levels were assessed in both PB and BM within one week of each other. In 24 of the cases, the BCR-ABL transcript levels in PB and BM were within 0.5 log values of each other. In the remaining 12 cases, BCR-ABL transcript levels differed by greater than 0.5 log. Three cases had higher BM levels, but surprisingly, 9 patients had a higher BCR-ABL transcript level in the PB. In all cases, BCR-ABL levels were assessed by Q-RT-PCR using the ABI7500 instrument and primers and probe designed to detect p210 and p190 breakpoints. Results were recorded as a ratio of %BCR-ABL to GAPDH that was amplified as an internal control. There was no significant difference in clinical, morphological or laboratory parameters between these patients and others who had comparable PB and BM BCR-ABL levels. These findings highlight the need to compare BCR-ABL transcript levels derived from the same tissue during longitudinal monitoring. Moreover, while potentially due to stochastic factors, the striking observation of higher PB BCR-ABL transcript levels raises the question of which tissue represents the most accurate source for monitoring of BCR-ABL transcript levels and whether there is value in confirming a significant change in PB transcript level with BM evaluation. The discrepant levels in PB and BM could not be attributed to technical issues; the timing of sample processing from collection and quality of mRNA were comparable and no variability was observed in GAPDH levels to account for the difference. Without a technical explanation, the mechanism underlying this phenomenon remains uncertain. We speculate that it may reflect CML stem cell geography with one possibility being that the CML niche may be located external to the BM. Further studies are needed to confirm these observations. If corroborated, then revision of surveillance approaches for chronic phase patients may be indicated. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4041-4041
Author(s):  
Cintia Do Couto Mascarenhas ◽  
Maria Helena Almeida ◽  
Eliana C M Miranda ◽  
Bruna Virgilio ◽  
Marcia Torresan Delamain ◽  
...  

Abstract Introduction The majority of chronic myeloid leukemia (CML) patients (pts) in chronic phase (CP), present satisfactory response to imatinib treatment. However, 25-30% of these pts exhibit suboptimal response or treatment failure. The probability of achieving optimal response may be related with several factors. The human organic cation transporter 1 (hOCT1, SLC22A1), an influx transporter, is responsible for the uptake of imatinib into chronic myeloid leukemia (CML) cells The aim of this study was to analyze hOCT-1 levels at diagnosis of CML patients and correlate with cytogenetics and molecular responses. Methods hOCT-1 expression was evaluated in 58 newly diagnosed CML pts. Pts were treated with imatinib 400-600mg in first line. Samples were collected from peripheral blood at diagnosis and RNA was obtained from total leucocytes. For cDNA synthesis, 3 ug of RNA was used. hOCT-1 expression was evaluated by real-time PCR with TaqMan probe SLC22A1 (Applied Biosystems) and endogenous GAPDH control. The results were analyzed using 2-ΔΔCT. Cytogenetic analysis was performed at diagnosis, 3, 6, 12 and 18 months after starting therapy and then every 12-24 months thereafter if CCR was achieved. BCR-ABL transcripts were measured in peripheral blood at 3-month intervals using quantitative RT-PCR (RQ-PCR). Results were expressed as BCR-ABL/ABL ratio, with conversion to the international scale (IS). Major molecular response (MMR) was defined as a transcript level ≤ 0.1%. Results 58 CML pts, 60% male, median age of 46 years (19-87) were evaluated, 71% in chronic phase (CP), 21% in accelerated phase (AP) and 5% in blast crisis (BC). The mean and median of hOCT-1 transcript levels in the total group was 2.03 and 0.961 respectively (0.008–19.039) and CP pts was 1.86 and 1.00 (0.008-10.34).The median duration of imatinib treatment was 27 months (1-109) and 96.6% achieved complete hematological response, 79.3% complete cytogenetic response and 69% major or complete molecular response. The regression analysis showed correlation between higher transcript levels of hOCT-1 and BCR-ABL transcripts<10%) at 3 months analysis (p<0.0001). Albeit, there was no influence of the hOCT-1 transcript levels at diagnosis in the achievement of cytogenetic and molecular response at 24 months of treatment. Conclusions In this report, we found that high hOCT-1 expression was predictive of BCR-ABL transcripts<10% at 3 months, although we did not find correlation between hOCT-1 levels at diagnosis and the achievement of molecular response at 24 months, studies show that there is correlation between BCR-ABL log reduction in the first months of treatment and the achievement of molecular response. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Juliana Gomez ◽  
Victor Duenas

Chronic myeloid leukemia is a myeloproliferative disorder that has three distinguished phases: chronic, accelerated, and blastic. In extremely rare cases, the blast phase can affect the central nervous system without concomitant bone marrow involvement. We report the case of a patient with chronic myeloid leukemia who, despite having achieved complete cytogenetic remission in the bone marrow for several years, experienced a blast crisis of the central nervous system following an episode of infectious meningoencephalitis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3766-3766
Author(s):  
Paolo Strati ◽  
Hagop M. Kantarjian ◽  
Deborah A. Thomas ◽  
Susan M. O'Brien ◽  
Elias J. Jabbour ◽  
...  

Abstract Abstract 3766 Background: Chronic Myeloid Leukemia (CML) may progress at advanced phase at the rate of 1–1.5% per year. Blastic phase (BP) CML (defined by a bone marrow blast count >30%) can show lymphoid features in up to 20–30% of cases. With the use of single agent imatinib or dasatinib, median overall survival (OS) ranges between 7 and 11 months. Combination therapy may offer an improved outcome. We analyzed the outcome of patients (pts) with lymphoid BP-CML treated with hyperfractionated cyclophosphamide, vincristine, adriamycin, dexamethasone (HCVAD) plus imatinib or dasatinib. Methods: 32 pts with lymphoid BP-CML were treated at MD Anderson with HCVAD plus imatinib or dasatinib between 2000 and 2011. The starting dose of imatinib was 400 mg (2 pts), 600 mg (20 pts) and 800 mg (1 pt). The starting dose of dasatinib was 50 mg (1 pt), 100 mg (7 pts) and 140 mg (1 pt). Survival curves were calculated using Kaplan-Meier estimates and were compared using the log-rank test. Results: the median age was 48 (22–74) and 72% were male. Four (12%) pts had a de novo diagnosis, 21 (66%) were previously treated with a tyrosine kinase inhibitor (TKI) for chronic phase (CP) and 3 (9%) for BP. At diagnosis, median WBC was 23.4 (1.1–165.4) x109/L, hemoglobin 10.6 (6.3–16.4) g/dL, platelets 51 (6–526) x109/L, blasts 33 (0–91)%, basophils 0 (0–2)%, creatinine 1 (0.6–1.5) mg/dL, albumin 3.8 (2–4.7) g/dL, bilirubin 0.5 (0.2–3.4) mg/dL, alanine aminotransferase 34 (12–446) IU/L; on bone marrow, median blasts were 78 (26–97)%, basophils 0 (0–4)% and additional chromosomal aberrations (ACA) were found in 15/24 (62%) pts, affecting mostly chromosome (chr) 7 (60%), chr9 (40%), chr8 (33%) and chr1 (27%). Before BP diagnosis, median Philadelphia (Ph) positivity by FISH was 67% (0–96); 6/14 (43%) pts showed a Ph mutation (Y253H, T315I, Q252H, F317L, E255K, M244V) at time of progression to BP. Median time from CML diagnosis to BP was 18 (2–33) months, with no significant differences according to previous Ph FISH positivity or CML therapies. Imatinib was added to HCVAD in 23 pts and Dasatinib in 9. Complete Remission (CR) was obtained in 27 (84%) of them (78% with imatinib, 100% with dasatinib). Twenty-three of 27 (87%) CR were achieved after 1stcycle of induction. Early mortality (i.e., within 60 days) occurred in 3 pts. Patients received a median of 4 (1–8) cycles of HCVAD. At the time of CR, median BCR-ABL transcript levels were 1.7 (0–100). The levels decreased to a median of 0.01 (0–100) after 3–4 cycles of therapy; 7/27 (26%) pts achieved negative values of BCR-ABL transcripts after a median of 2 (1–4) months. Three (43%) of 7 pts who achieved complete molecular remission relapsed. MRD by flow cytometry became negative in 15/17 (88%) pts: 14 after induction, 1 after 2 months. Six (40%) of the pts with negative flow cytometry for MRD relapsed. Thirteen pts received SCT in remission: 4 relapsed and died after SCT. Median Progression Free Survival (PFS) was not reached and was longer among SCT recipients (p=0.03) and patients who had a negative flow cytometry at the time of CR (p<0.001). OS was 17 (7–27) months and was longer in patients with no more than 1 line of treatment for CP of CML, with ACA (p=0.01) and among SCT recipients (p<0.001). Among patients who had a CR, OS was longer if flow cytometry was negative at the time of CR (p=0.02) and if BCR-ABL transcript levels were < 1.7% (p=0.01) at the time of CR or <0.025% as best result (p=0.03). Conclusions: HCVAD plus imatinib or dasatinib is an effective regimen for pts with lymphoid BP CML, particularly when followed by SCT. ACA and less than 1 treatment for CML are positive prognostic factors. Better results are observed if negative flow cytometry and low levels of BCR-ABL transcripts are achieved with therapy. Disclosures: Ravandi: BMS: Honoraria, Research Funding.


2020 ◽  
Vol 58 (8) ◽  
pp. 1214-1222
Author(s):  
Georg Greiner ◽  
Franz Ratzinger ◽  
Michael Gurbisz ◽  
Nadine Witzeneder ◽  
Hossein Taghizadeh ◽  
...  

AbstractBackgroundMonitoring of molecular response (MR) using quantitative polymerase chain reaction (PCR) for BCR-ABL1 is a pivotal tool for guiding tyrosine kinase inhibitor therapy and the long-term follow-up of patients with chronic myeloid leukemia (CML). Results of MR monitoring are standardized according to the International Scale (IS), and specific time-dependent molecular milestones for definition of optimal response and treatment failure have been included in treatment recommendations. The common practice to use peripheral blood (PB) instead of bone marrow (BM) aspirate to monitor the MR monitoring in CML has been questioned. Some studies described differences between BCR-ABL1 levels in paired PB and BM specimens.MethodsWe examined 631 paired PB and BM samples from 283 CML patients in a retrospective single-center study using an IS normalized quantitative reverse transcription (qRT)-PCR assay for quantification of BCR-ABL1IS.ResultsA good overall concordance of BCR-ABL1IS results was found, a systematic tendency towards higher BCR-ABL1IS levels in PB was observed in samples of CML patients in a major MR. This difference was most pronounced in patients treated with imatinib for at least 1 year. Importantly, the difference resulted in a significantly lower rate of deep MR when BCR-ABL1IS was assessed in the PB compared to BM aspirates.ConclusionsIn summary, our data suggest that the classification of deep MR in patients with CML is more stringent in PB than in BM. Our study supports the current practice to primarily use PB for long-term molecular follow-up monitoring in CML.


Sign in / Sign up

Export Citation Format

Share Document