scholarly journals Study of HSPB6: Insights into the Properties of the Multifunctional Protective Agent

2017 ◽  
Vol 44 (1) ◽  
pp. 314-332 ◽  
Author(s):  
Fazhao Li ◽  
Han Xiao ◽  
Fangfang Zhou ◽  
Zhiping Hu ◽  
Binbin Yang

HSPB6(Heat shock protein B6), is also referred to as P20/HSP20. Unlike other many other members of sHSP(small Heat shock protein) family, which tend to form high-molecular-mass oligomers, in solution, human HSPB6 only forms dimers. However, it still exhibits chaperon-like activity comparable with that of HSPB5. It is expressed ubiquitously, with high and constitutive expression in muscular tissues. sHSPs characteristically function as molecular chaperones and HSPB6 also has a molecular chaperone activity. HSPB6 is up-regulated in response to diverse cellular stress or damage and protect cells from otherwise lethal conditions. HSPB6 is widely recognized as a principle mediator of cardioprotective signaling and recent studies have unraveled the protective role of HSPB6 in disease or injury to the central nervous system. Moreover, accumulating evidence has implicated HSPB6 as a key mediator of diverse vital physiological processes, such as smooth muscle relaxation, platelet aggregation. The versatility of HSPB6 can be explained by its direct involvement in regulating different client proteins and its ability to form heterooligomer with other sHSPs, which seems to be dependent on HSPB6 phosphorylation. This review focuses on the properties including expression and regulation pattern, phosphorylation, chaperon activity, multiple cellular targets of HSPB6, as well as its possible role in physical and pathological conditions.

2013 ◽  
Vol 62 (7) ◽  
pp. 959-967 ◽  
Author(s):  
Jayapal Jeya Maheshwari ◽  
Kuppamuthu Dharmalingam

The aim of this study is to examine the in vivo role of a small heat-shock protein (sHsp18) from Mycobacterium leprae in the survival of heterologous recombinant hosts carrying the gene encoding this protein under different environmental conditions that are normally encountered by M. leprae during its infection of the human host. Using an Escherichia coli system where shsp18 expression is controlled by its native promoter, we show that expression of shsp18 is induced under low oxygen tension, nutrient depletion and oxidative stress, all of which reflect the natural internal environment of the granulomas where the pathogen resides for long periods. We demonstrate the in vivo chaperone activity of sHsp18 through its ability to confer survival advantage to recombinant E. coli at heat-shock temperatures. Additional evidence for the protective role of sHsp18 was obtained when Mycobacterium smegmatis harbouring a copy of shsp18 was found to multiply better in human macrophages. Furthermore, the autokinase activity of sHsp18 protein demonstrated for what is believed to be the first time in this study implies that some of the functions of sHsp18 might be controlled by the phosphorylation state of this protein. Results from this study suggest that shsp18 might be one of the factors that facilitate the survival and persistence of M. leprae under stress and autophosphorylation of sHsp18 protein could be a mechanism used by this protein to sense changes in the external environment.


2010 ◽  
Vol 158 (2) ◽  
pp. 361-362
Author(s):  
S. Rizvi ◽  
P. Komalavilas ◽  
R. Guzman ◽  
J. Dattilo ◽  
C. Brophy

Sign in / Sign up

Export Citation Format

Share Document