Starch Combined with Sucrose Provokes Greater Root Dentine Demineralization than Sucrose Alone

2018 ◽  
Vol 52 (4) ◽  
pp. 323-330
Author(s):  
Samilly Evangelista Souza ◽  
Aline Araújo Sampaio ◽  
Altair Antoninha Del Bel Cury ◽  
Yuri Wanderley Cavalcanti ◽  
Antônio Pedro Ricomini Filho ◽  
...  

Since there is no consensus about whether starch increases the cariogenic potential of sucrose, we used a validated 3-species biofilm model to evaluate if starch combined with sucrose provokes higher root dentine demineralization than sucrose alone. Biofilms (n = 18) composed by Streptococcus mutans (the most cariogenic bacteria), Actinomces naeslundii (which has amylolytic activity), and Streptococcus gordonii (which binds salivary amylase) were formed on root dentine slabs under exposure 8 ×/day to one of the following treatments: 0.9% NaCl, 1% starch, 10% sucrose, or a combination of 1% starch and 10% sucrose. Before each treatment, biofilms were pretreated with human whole saliva for 1 min. The pH of the culture medium was measured daily as an indicator of biofilm acidogenicity. After 96 h of growth, the biofilms were collected, and the biomass, bacteria viability, and polysaccharides were analyzed. Dentine demineralization was assessed by surface hardness loss (% SHL). Biofilm bioarchitecture was analyzed using confocal laser scanning microscopy. Treatment with a starch and sucrose combination provoked higher (p = 0.01) dentine demineralization than sucrose alone (% SHL = 53.2 ± 7.0 vs. 43.2 ± 8.7). This was supported by lower pH values (p = 0.007) of the culture medium after daily exposure to the starch and sucrose combination compared with sucrose (4.89 ± 0.29 vs. 5.19 ± 0.32). Microbiological and biochemical findings did not differ between biofilms treated with the combination of starch and sucrose and sucrose alone (p > 0.05). Our findings give support to the hypothesis that a starch and sucrose combination is more cariogenic for root dentine than sucrose alone.

2009 ◽  
Vol 79 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Seung-Pyo Lee ◽  
Shin-Jae Lee ◽  
Bum-Soon Lim ◽  
Sug-Joon Ahn

AbstractObjective: To test the hypothesis that there are no significant differences in the adhesion of mutans streptococci (MS) to various orthodontic materials based on their surface characteristics.Materials and Methods: Surface roughness (SR) and surface free energy (SFE) characteristics were investigated for nine different orthodontic materials (four orthodontic adhesives, three bracket raw materials, hydroxyapatite blocks, and bovine incisors) using confocal laser scanning microscopy and sessile drop method. Each material, except the bovine incisors, was incubated with whole saliva or phosphate-buffered saline for 2 hours. Adhesion assays were performed by incubating tritium-labeled MS with each material for 3 or 6 hours.Results: Orthodontic adhesives had higher SFE characteristics and lower SR than bracket materials. Orthodontic adhesives showed a higher MS retaining capacity than bracket materials, and MS adhesion to resin-modified glass ionomer and hydroxyapatite was highest. Extended incubation time increased MS adhesion, while saliva coating did not significantly influence MS adhesion. SFE, specifically its dispersive and polar components, was positively correlated with MS adhesion, irrespective of saliva coating.Conclusions: The hypothesis is rejected. This study suggests that SFE characteristics play an important role in the initial MS adhesion to orthodontic materials.


Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Phat Tran ◽  
Tyler Enos ◽  
Keaton Luth ◽  
Abdul Hamood ◽  
Coby Ray ◽  
...  

The dressing material of a wound plays a key role since bacteria can live in the bandage and keep re-infecting the wound, thus a bandage is needed that blocks biofilm in the bandage. Using an in vivo wound biofilm model, we examined the effectiveness of an organo-selenium (OS)-coated polyester dressing to inhibit the growth of bacteria in a wound. Staphylococcus aureus (as well as MRSA, Methicillin resistant Staph aureus), Stenotrophomonas maltophilia, Enterococcus faecalis, Staphylococcus epidermidis, and Pseudomonas aeruginosa were chosen for the wound infection study. All the bacteria were enumerated in the wound dressing and in the wound tissue under the dressing. Using colony-forming unit (CFU) assays, over 7 logs of inhibition (100%) was found for all the bacterial strains on the material of the OS-coated wound dressing and in the tissue under that dressing. Confocal laser scanning microscopy along with IVIS spectrum in vivo imaging confirmed the CFU results. Thus, the dressing acts as a reservoir for a biofilm, which causes wound infection. The same results were obtained after soaking the dressing in PBS at 37 °C for three months before use. These results suggest that an OS coating on polyester dressing is both effective and durable in blocking wound infection.


2006 ◽  
Vol 72 (9) ◽  
pp. 6277-6287 ◽  
Author(s):  
Mizuho Motegi ◽  
Yuzo Takagi ◽  
Hideo Yonezawa ◽  
Nobuhiro Hanada ◽  
Jun Terajima ◽  
...  

ABSTRACT Streptococcus mutans, the major pathogen responsible for dental caries in humans, is a biofilm-forming bacterium. In the present study, 17 different pulsed-field gel electrophoresis patterns of genomic DNA were identified in S. mutans organisms isolated clinically from whole saliva. The S. mutans isolates showed different abilities to form biofilms on polystyrene surfaces in semidefined minimal medium cultures. Following cultivation in a flow cell system in tryptic soy broth with 0.25% sucrose and staining using a BacLight LIVE/DEAD system, two strains, designated FSC-3 and FSC-4, showed the greatest and least, respectively, levels of biofilm formation when examined with confocal laser scanning microscopy. Further, image analyses of spatial distribution and architecture were performed to quantify the merged green (live cells) and red (dead cells) light. The light intensity of the FSC-3 biofilm was greater than that of the FSC-4 biofilm in the bottom area but not in the top area. S. mutans whole-genome array results showed that approximately 3.8% of the genes were differentially expressed in the two strains, of which approximately 2.2%, including bacitracin transport ATP-binding protein gene glrA and a BLpL-like putative immunity protein gene, were activated in FSC-3. In addition, about 1.6% of the genes, including those associated with phosphotransferase system genes, were repressed. Analyses of the glrA-deficient strains and reverse transcription-PCR confirmed the role of the gene in biofilm formation. Differential assessment of biofilm-associated genes in clinical strains may provide useful information for understanding the morphological development of streptococcal biofilm, as well as for colonization of S. mutans.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 356
Author(s):  
Jinxin Yan ◽  
Xin Jia ◽  
Wenjia Yan ◽  
Lijun Yin

Corn fiber gum (CFG) -soy protein isolate (SPI) double-network (DN) hydrogels were fabricated using laccase and a heat treatment process, in which CFG solution formed the first gel network via laccase oxidation, while SPI formed the second network through heating, as described in our previous research. The aim of this study was to investigate the influences of CFG/SPI constituents (CFG concentration 0–3%, w/v; SPI concentration 8–10%, w/v) and pH values (5.0–7.5) on the textural properties, microstructures and water-holding capacities (WHC) of the CFG-SPI DN hydrogels. Confocal Laser Scanning Microscopy (CLSM) results showed an apparent phase separation when the CFG concentration was above 1% (w/v). The textural characteristics and WHC of most DN hydrogels were enhanced with increasing concentrations of CFG and SPI. Scanning Electron Microscopy (SEM) observations revealed that the microstructures of DN hydrogels were converted from coarse and irregular to smooth and ordered as pH values increased from 5.0 to 7.5. Excellent textural properties and WHC were observed at pH 7.0. This study developed various CFG-SPI DN hydrogels with diverse textures and structures, governed by the concentrations of protein/polysaccharide and pH values, and also contributes to the understanding of gum–protein interactions in DN hydrogels obtained under different conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lukas Simon Kriem ◽  
Kevin Wright ◽  
Renzo Alberto Ccahuana-Vasquez ◽  
Steffen Rupp

Techniques for continuously monitoring the formation of subgingival biofilm, in relation to the determination of species and their accumulation over time in gingivitis and periodontitis, are limited. In recent years, advancements in the field of optical spectroscopic techniques have provided an alternative for analyzing three-dimensional microbiological structures, replacing the traditional destructive or biofilm staining techniques. In this work, we have demonstrated that the use of confocal Raman spectroscopy coupled with multivariate analysis provides an approach to spatially differentiate bacteria in an in vitro model simulating a subgingival dual-species biofilm. The present study establishes a workflow to evaluate and differentiate bacterial species in a dual-species in vitro biofilm model, using confocal Raman microscopy (CRM). Biofilm models of Actinomyces denticolens and Streptococcus oralis were cultured using the “Zürich in vitro model” and were analyzed using CRM. Cluster analysis was used to spatially differentiate and map the biofilm model over a specified area. To confirm the clustering of species in the cultured biofilm, confocal laser scanning microscopy (CLSM) was coupled with fluorescent in vitro hybridization (FISH). Additionally, dense bacteria interface area (DBIA) samples, as an imitation of the clusters in a biofilm, were used to test the developed multivariate differentiation model. This confirmed model was successfully used to differentiate species in a dual-species biofilm and is comparable to morphology. The results show that the developed workflow was able to identify main clusters of bacteria based on spectral “fingerprint region” information from CRM. Using this workflow, we have demonstrated that CRM can spatially analyze two-species in vitro biofilms, therefore providing an alternative technique to map oral multi-species biofilm models.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shiyu Liu ◽  
Wei Qiu ◽  
Keke Zhang ◽  
Xuedong Zhou ◽  
Biao Ren ◽  
...  

Streptococcus mutansandCandida albicansare common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies betweenS. mutansandC. albicansis explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. MoreC. albicanscells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showedgtfsexpression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth ofS. mutans, and moreS. mutanscells attracted moreC. albicanscells due to the interaction between two species. SinceS. mutansandC. albicansare putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.


2018 ◽  
Vol 53 (3) ◽  
pp. 322-331 ◽  
Author(s):  
Aline A. Sampaio ◽  
Samilly E. Souza ◽  
Antônio P. Ricomini-Filho ◽  
Altair A. Del Bel Cury ◽  
Yuri W. Cavalcanti ◽  
...  

Streptococcus mutans are considered the most cariogenic bacteria, but it has been suggested that Candida albicans could increase their cariogenicity. However, the effect of this dual-species microorganisms’ combination on dentine caries has not been experimentally evaluated. Biofilms of C. albicans, S. mutans and C. albicans + S. mutans (n = 12/biofilm) were grown in ultra-filtered tryptone yeast extract broth culture medium for 96 h on root dentine slabs of known surface hardness and exposed 8 times per day for 3 min to 10% sucrose. The medium was changed 2 times per day (after the 8 cariogenic challenges and after the overnight period of famine), and aliquots were analyzed to determinate the pH (indicator of biofilm acidogenicity). After 96 h, the biofilms were collected to determine the wet weight, colony-forming units, and the amounts of extracellular polysaccharides (soluble and insoluble). Dentine demineralization was assessed by surface hardness loss (% SHL). The architecture of the biofilms was analyzed by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Data were analyzed by ANOVA followed by Tukey’s test (α = 0.05). The dual-species C. albicans + S. mutans biofilm provoked higher % SHL on dentine (p < 0.05) than the S. mutans and C. albicans biofilm. This was supported by the results of biofilm acidogenicity and the amounts of soluble (6.4 ± 2.14 vs. 4.0 ± 0.94 and 1.9 ± 0.97, respectively) and insoluble extracellular polysaccharides (24.9 ± 9.22 vs. 18.9 ± 5.92 and 0.7 ± 0.48, respectively) (p < 0.05). The C. albicans biofilm alone presented low cariogenicity. The images by CLSM and TEM, respectively, suggest that the C. albicans + S. mutans biofilm is more voluminous than the S. mutans biofilm, and S. mutans cells interact with C. albicans throughout polysaccharides from the biofilm matrix. These findings show that C. albicans enhances the cariogenic potential of the S. mutans biofilm, increasing dentine demineralization.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1597
Author(s):  
Norbert Kamjunke ◽  
Uwe Spohn ◽  
Christian Morig ◽  
Georg Wagner ◽  
Thomas R. Neu

Due to the current dependence on biocidal antifouling coatings for biofouling control, there is a continuing international challenge to develop more environmentally acceptable antifouling systems. Fluctuating the pH values on paint surfaces is one of these approaches. We developed an antifouling test device to investigate algal biofilms on conductive paints by using a flume with electrochemically working test panels and subsequent confocal laser scanning microscopy (CLSM) of biofilms. By employing a pole reversal of direct current, fluctuating pH values on the paint surface were generated. As a consequence of the resulting pH stress, colonization of the paint surface by diatoms decreased substantially. The density of biofilm algae decreased with increasing pH fluctuations. However, breaks between electrochemical treatments should not exceed one hour. Overall, we established an experimental setup for testing the antifouling capabilities of electrodes based on conductive paints, which could be used for further development of these varnishes.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Manon F. Pritchard ◽  
Lydia C. Powell ◽  
Alison A. Jack ◽  
Kate Powell ◽  
Konrad Beck ◽  
...  

ABSTRACT In chronic respiratory disease, the formation of dense, 3-dimensional “microcolonies” by Pseudomonas aeruginosa within the airway plays an important role in contributing to resistance to treatment. An in vitro biofilm model of pseudomonal microcolony formation using artificial-sputum (AS) medium was established to study the effects of low-molecular-weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation, and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates (n = 3) and reference nonmucoid and mucoid multidrug-resistant (MDR) CF isolates (n = 7). Bacterial growth and biofilm development and disruption were studied using cell viability assays and image analysis with scanning electron and confocal laser scanning microscopy. Pseudomonal growth in AS medium was associated with increased ATP production (P < 0.05) and the formation (at 48 h) of discrete (>10-μm) microcolonies. In conventional growth medium, colistin retained an ability to inhibit growth of planktonic bacteria, although the MIC was increased (0.1 to 0.4 μg/ml) in AS medium compared to Mueller-Hinton (MH) medium. In contrast, in an established-biofilm model in AS medium, the efficacy of colistin was decreased. OligoG CF-5/20 (≥2%) treatment, however, induced dose-dependent biofilm disruption (P < 0.05) and led to colistin retaining its antimicrobial activity (P < 0.05). While circular dichroism indicated that OligoG CF-5/20 did not change the orientation of the alginate carboxyl groups, mass spectrometry demonstrated that the oligomers induced dose-dependent (>0.2%; P < 0.05) reductions in pseudomonal quorum-sensing signaling. These findings reinforce the potential clinical significance of microcolony formation in the CF lung and highlight a novel approach to treat MDR pseudomonal infections.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Jason L. Brown ◽  
Tracy Young ◽  
Emily McKloud ◽  
Mark C. Butcher ◽  
David Bradshaw ◽  
...  

Denture stomatitis (DS) is an inflammatory disease resulting from a polymicrobial biofilm perturbation at the denture surface–palatal mucosa interface. Recommendations made by dental health care professionals often lack clarity for appropriate denture cleaning. This study investigated the efficacy of brushing with off-the-shelf denture cleanser (DC) tablets (Poligrip®) vs. two toothpastes (Colgate® and Crest®) in alleviating the viable microorganisms (bacteria and fungi) in an in vitro denture biofilm model. Biofilms were grown on poly(methyl)methacrylate (PMMA) discs, then treated daily for 7 days with mechanical disruption (brushing), plus Poligrip® DC, Colgate® or Crest® toothpastes. Weekly treatment with Poligrip® DC on day 7 only was compared to daily modalities. All treatment parameters were processed to determine viable colony forming units for bacteria and fungi using the Miles and Misra technique, and imaged by confocal laser scanning microscopy (CLSM). Brushing with daily DC therapy was the most effective treatment in reducing the viable biofilm over 7 days of treatment. Brushing only was ineffective in controlling the viable bioburden, which was confirmed by CLSM imaging. This data indicates that regular cleansing of PMMA with DC was best for polymicrobial biofilms.


Sign in / Sign up

Export Citation Format

Share Document