scholarly journals Nuclear Localization Leucine-Rich-Repeat Protein 1 Deficiency Protects Against Cardiac Hypertrophy by Pressure Overload

2018 ◽  
Vol 48 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Jing Zong ◽  
Fang-fang Li ◽  
Kai Liang ◽  
Rui Dai ◽  
Hao Zhang ◽  
...  

Background/Aims: Nuclear localization leucine-rich-repeat protein 1 (NLRP1) is a cytoplasmic protein, involved in autoimmune diseases, mammalian reproduction, neuronal cell death, and stroke. However, the role of NLRP1 in cardiac hypertrophy remains unclear. We used in vivo and in vitro models to investigate the effects of NLRP1 on cardiac hypertrophy. Methods: We used NLRP1-deficient mice and cultured neonatal rat cardiomyocytes with gain and loss of NLRP1 function. Cardiac hypertrophy was estimated by echocardiographic and hemodynamic measurements, and by pathological and molecular analysis. Results: Eight weeks after aortic banding (AB), NLRP1 deficiency significantly inhibited aortic banding–induced cardiac hypertrophy, inflammation, and fibrosis. Activation of MAPK, NF-κB, and TGF-β/Smad pathways was reduced in NLRP1-knockout (KO) mice compared with that in wild-type (WT) mice. Consistent with these results, in vitro studies, performed using cultured neonatal mouse cardiomyocytes, confirmed that NLRP1 deficiency protects against cardiomyocyte hypertrophy induced by isoproterenol (PE); this protective activity was associated with the arrest of MAPK and NF-κB signaling. Conclusions: Our data illustrates that NLRP1 plays a crucial role in the development of cardiac hypertrophy via positive regulation of the MAPK, NF-κB, and TGF-β/Smad signaling pathways.

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Zheng Wang ◽  
Lu Gao ◽  
Lili Xiao ◽  
Lingyao Kong ◽  
Huiting Shi ◽  
...  

Bakuchiol (Bak), a monoterpene phenol isolated from the seeds of Psoralea corylifolia, has been widely used to treat a large variety of diseases in both Indian and Chinese folkloric medicine. However, the effects of Bak on cardiac hypertrophy remain unclear. Therefore, the present study was designed to determine whether Bak could alleviate cardiac hypertrophy. Mice were subjected to aortic banding (AB) to induce cardiac hypertrophy model. Bak of 1 ml/100 g body weight was given by oral gavage once a day from 1 to 8 weeks after surgery. Our data demonstrated for the first time that Bak could attenuate pressure overload-induced cardiac hypertrophy and could attenuate fibrosis and the inflammatory response induced by AB. The results further revealed that the effect of Bak on cardiac hypertrophy was mediated by blocking the activation of the NF-κB signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes further proved that the protective effect of Bak on cardiac hypertrophy is largely dependent on the NF-κB pathway. Based on our results, Bak shows profound potential for its application in the treatment of pathological cardiac hypertrophy, and we believe that Bak may be a promising therapeutic candidate to treat cardiac hypertrophy and heart failure.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Derk Frank ◽  
Robert Frauen ◽  
Christiane Hanselmann ◽  
Christian Kuhn ◽  
Rainer Will ◽  
...  

In order to identify new molecular mediators of cardiomyocyte hypertrophy, we performed a genome wide mRNA microarray screen of biomechanically stretched neonatal rat cardiomyocytes (NRCM). We found the novel sarcomeric LIM protein Dyxin/Lmcd1 being significantly upregulated (5.6x, p<0.001). Moreover, Dyxin was also significantly induced in several mouse models of myocardial hypertrophy including aortic banding, calcineurin overexpression and angiotensin stimulation, suggesting a potential role as a mediator of cardiac hypertrophy. To further test this hypothesis, we adenovirally overexpressed Dyxin in NRCM which potently induced cellular hypertrophy (150%, p<0.001) and the hypertrophic gene program (ANF, BNP). Consistent with an induction of calcineurin signalling, the calcineurin-responsive gene Rcan1– 4 (MCIP1.4) was found significantly upregulated (3.2x, p<0.001). Conversely, knockdown of Dyxin (−75% on protein level) via miRNA completely blunted the hypertrophic response to hypertrophic stimuli, including stretch and PE (both p<0.001). Furthermore, PE-mediated activation of calcineurin signaling (Upregulation of Rcan1– 4 by 7.3x, p<0.001) was completely blocked by knockdown of Dyxin. To confirm these results in vivo, we next generated transgenic mice with cardiac-restricted overexpression of Dyxin using the α -MHC promoter. Despite normal cardiac function as assessed by echocardiography, adult transgenic mice displayed significant cardiac hypertrophy in morphometrical analyses (3.9 vs. 3.5 mg/g LV/heart weight, n=8–11, p<0.05). This finding was supplemented by a robust induction of the hypertrophic gene program including ANF (3.7-fold, n=6, p=0.01) and α -skeletal actin (2.8-fold, n=6, p<0.05). Likewise, Rcan1– 4 was found upregulated (+112%, n=5, p<0.05), Taken together, we show that the novel sarcomeric z-disc protein Dyxin/Lmcd1 is significantly upregulated in several models of cardiac hypertrophy and potently induces cardiomyocyte hypertrophy both in vitro and in vivo. Mechanistically, Lmcd1/Dyxin appears to signal through the calcineurin pathway.


2020 ◽  
Vol 48 (8) ◽  
pp. 030006052093641
Author(s):  
Chufeng Wang ◽  
Zezheng Pan

Objective To investigate if hydrogen-rich saline (HRS), which has been shown to have antioxidant and anti-inflammatory properties, could mitigate cardiac remodelling and reduce the incidence of atrial fibrillation (AF) in the rat model of cardiac hypertrophy. Methods Pressure overload was induced in rats by abdominal aortic constriction (AAC). The animals were separated into four groups: sham; AAC group; AAC plus low dose HRS (LHRS); AAC plus high dose HRS (HHRS). The sham and AAC groups received normal saline intraperitoneally and the LHRS and HHRS groups received 3 or 6 ml/kg HRS daily for six weeks, respectively. In vitro research was also performed using cardiotrophin-1 (CT-1)-induced hypertrophy of cultured neonatal rat cardiomyocytes. Results Cardiac hypertrophy was successfully induced by AAC and low and high dose HRS mitigated the pressure overload as shown by lower heart and atrial weights in these treatment groups. AF incidence and duration of the HRS groups were also significantly lower in the HRS groups compared with the AAC group. Atrial fibrosis was also reduced in the HRS groups and the JAK-STAT signalling pathway was down-regulated. In vitro experiments showed that hydrogen-rich medium mitigated the CT-1-induced cardiomyocyte hypertrophy with a similar effect as the JAK specific antagonists AG490. Conclusions HRS was found to mitigate cardiac hypertrophy induced by pressure overload in rats and reduce atrial fibrosis and AF which was possibly achieved via inhibition of the JAK-STAT signalling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shi Peng ◽  
Xiao-feng Lu ◽  
Yi-ding Qi ◽  
Jing Li ◽  
Juan Xu ◽  
...  

Aims. We aimed to investigate whether LCZ696 protects against pathological cardiac hypertrophy by regulating the Sirt3/MnSOD pathway. Methods. In vivo, we established a transverse aortic constriction animal model to establish pressure overload-induced heart failure. Subsequently, the mice were given LCZ696 by oral gavage for 4 weeks. After that, the mice underwent transthoracic echocardiography before they were sacrificed. In vitro, we introduced phenylephrine to prime neonatal rat cardiomyocytes and small-interfering RNA to knock down Sirt3 expression. Results. Pathological hypertrophic stimuli caused cardiac hypertrophy and fibrosis and reduced the expression levels of Sirt3 and MnSOD. LCZ696 alleviated the accumulation of oxidative reactive oxygen species (ROS) and cardiomyocyte apoptosis. Furthermore, Sirt3 deficiency abolished the protective effect of LCZ696 on cardiomyocyte hypertrophy, indicating that LCZ696 induced the upregulation of MnSOD and phosphorylation of AMPK through a Sirt3-dependent pathway. Conclusions. LCZ696 may mitigate myocardium oxidative stress and apoptosis in pressure overload-induced heart failure by regulating the Sirt3/MnSOD pathway.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Astrid H Breitbart ◽  
Florian Brandes ◽  
Oliver Müller ◽  
Natali Froese ◽  
Mortimer Korf-Klingebiel ◽  
...  

Background: CTRP9 (also called C1qtnf9) is a newly discovered secreted protein and a paralog of adiponectin. The biological functions of CTRP9, however, are still largely unknown. Results: Although previous data from a semi-quantitative real-time PCR had suggested that CTRP9 is mainly secreted by adipose tissue, we found its mRNA to be predominantly expressed in the heart by quantitative real-time PCR. Interestingly, we identified CTRP9 mRNA as significantly upregulated in hypertrophied mouse hearts (after 2 weeks of aortic constriction, TAC) as well as in hypertrophied human hearts (24±4-fold versus healthy human myocardium; p<0.01). LacZ staining in myocardial sections of C1qtnf9 tm1(KOMP)Vlcg mice (knock-out for CTRP9, containing a lacZ cassette to replace exon 1-3 of the gene) revealed exclusive expression of CTRP9 in capillary and venous endothelial cells. Adenoviral overexpression of CTRP9 or recombinant CTRP9 strongly inhibited cardiomyocyte hypertrophy (assessed as cell size, protein/DNA-ratio, expression of skeletal α-actin) after stimulation with phenylephrine (PE). Accordingly, myocardial overexpression of CTRP9 via a cardioselective adeno-associated virus (AAV9-CTRP9) in mice dramatically reduced cardiac hypertrophy after two weeks of pressure overload (heart weight/body weight ratio, HW/BW in mg/g: AAV9-control 6.5±0.2 versus AAV9-CTRP9 5.6±0.2; p<0.01). In turn, downregulation of CTRP9 by a specific siRNA aggravated cardiomyocyte growth in response to PE in vitro and CTRP9 knock-out (KO) mice exerted an enhanced hypertrophic response after two weeks of TAC in vivo (% increase in HW/BW versus sham: wild-type 77±13, KO 106±9; p<0.05). Mechanistically, we found that CTRP9 binds to the adiponectin receptor 1 (AdipoR1) and inhibits prohypertrophic mTOR signalling in cardiac myocytes. SiRNA mediated downregulation of AdipoR1 or mTOR in neonatal rat cardiomyocytes abolished the anti-hypertrophic effect of CTRP9. Conclusion: Endothelial cell derived CTRP9 inhibits cardiac hypertrophy through binding to AdipoR1 and inhibition of the mTOR pathway in cardiomyocytes. Therefore, myocardial application of CTRP9 could be a novel strategy to combat pathological cardiac hypertrophy.


1996 ◽  
Vol 270 (5) ◽  
pp. C1284-C1292 ◽  
Author(s):  
H. H. Vandenburgh ◽  
R. Solerssi ◽  
J. Shansky ◽  
J. W. Adams ◽  
S. A. Henderson

Adherent cultures of neonatal rat cardiomyocytes were subjected to progressive, unidirectional lengthening for 2-4 days in serum-containing medium. This mechanical stretch (25% increase in initial length each day) simulates the eccentric mechanical load placed on in vivo heart cells by increases in postnatal blood pressure and volume. The in vitro mechanical stimuli initiated a number of morphological alterations in the confluent cardiomyocyte population which were similar to those occurring during in vivo heart growth. These include cardiomyocyte organization into parallel arrays of rod-shaped cells, increased cardiomyocyte binucleation, and cardiomyocyte hypertrophy by longitudinal cell growth. Stretch stimulated DNA synthesis in the noncardiomyocyte population but not in the cardiomyocytes. Myosin heavy chain (MHC) content increased 62% over 4 days of stretch and included increased accumulation of both fetal beta-MHC and adult alpha-MHC isoforms. This new model of stretch-induced cardiomyocyte hypertrophy may assist in examining some of the complex mechanogenic growth processes that occur in the rapidly enlarging neonatal heart.


2004 ◽  
Vol 72 (8) ◽  
pp. 4619-4627 ◽  
Author(s):  
Akihiko Ikegami ◽  
Kiyonobu Honma ◽  
Ashu Sharma ◽  
Howard K. Kuramitsu

ABSTRACT The gene lrrA, encoding a leucine-rich repeat protein, LrrA, that contains eight consensus tandem repeats of 23 amino acid residues, has been identified in Treponema denticola ATCC 35405. A leucine-rich repeat is a generally useful protein-binding motif, and proteins containing this repeat are typically involved in protein-protein interactions. Southern blot analysis demonstrated that T. denticola ATCC 35405 expresses the lrrA gene, but the gene was not identified in T. denticola ATCC 33520. In order to analyze the functions of LrrA in T. denticola, an lrrA-inactivated mutant of strain ATCC 35405 and an lrrA gene expression transformant of strain ATCC 33520 were constructed. Characterization of the mutant and transformant demonstrated that LrrA is associated with the extracytoplasmic fraction of T. denticola and expresses multifunctional properties. It was demonstrated that the attachment of strain ATCC 35405 to HEp-2 cell cultures and coaggregation with Tannerella forsythensis were attenuated by the lrrA mutation. In addition, an in vitro binding assay demonstrated specific binding of LrrA to a portion of the Tannerella forsythensis leucine-rich repeat protein, BspA, which is mediated by the N-terminal region of LrrA. It was also observed that the lrrA mutation caused a reduction of swarming in T. denticola ATCC 35405 and consequently attenuated tissue penetration. These results suggest that the leucine-rich repeat protein LrrA plays a role in the attachment and penetration of human epithelial cells and coaggregation with Tannerella forsythensis. These properties may play important roles in the virulence of T. denticola.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Maomao Gao ◽  
Fengjiao Hu ◽  
Manli Hu ◽  
Yufeng Hu ◽  
Hongjie Shi ◽  
...  

Abstract Aim: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, the potential and significance of Sop should be broadened and it should be considered as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. Methods: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) enlargement model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At 1 week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination. Results: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulation. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. Conclusion: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Derk Frank ◽  
Christiane Hanselmann ◽  
Rainer Will ◽  
Hugo A Katus ◽  
Norbert Frey

Sustained cardiac hypertrophy may lead to heart failure and sudden death. While significant progress has been made in elucidating the underlying molecular mechanisms, it is believed that several molecules that modulate cardiomyocyte growth remain elusive. To identify novel candidates involved in hypertrophic signalling, we conducted a genome-wide screening experiment by subjecting neonatal rat cardiomyocytes (NRCM) to either biomechanical stretch or phenylephrine (PE) stimulation followed by microarray analyses. Among several other molecules (stretch: n=164; PE: n=238), the new LIM protein Dyxin/Lmcd1 was significantly upregulated both by stretch (5.6fold, p<0.001) and PE (2.5 fold, p<0.01). Moreover, Dyxin was markedly induced in hypertrophic hearts of transgenic mice overexpressing the phosphatase calcineurin (3.8fold on mRNA- and 2.9fold on protein level (both p<0.01)). To dissect the putative function of this novel molecule, we adenovirally overexpressed Dyxin in NRCM, which led to marked cellular hypertrophy (1.5fold increase in cell surface area, p<0.001) and induction of ANF (3.8fold, p<0.05). In addition, the calcineurin-responsive gene MCIP1.4 was found upregulated (3.2fold, p<0.001), suggesting that Dyxin activates the calcineurin pathway. In order to test whether Dyxin is also required for cardiomyocyte hypertrophy, we stimulated NRCVM with either PE or stretch and utilized adenovirus-encoded microRNAs to knock down Dyxin (−75% on protein, −85% on mRNA level). While both PE and stretch induced significant hypertrophy (+41% and +48%, p<0.001), the inhibition of Dyxin expression completely blunted the hypertrophic response to both stimuli (p<0.001). Consistently, induction of the “hypertrophic gene program” (including ANF, BNP, and alpha-skeletal actin) was abrogated. Likewise, PE-mediated upregulation of MCIP1.4 expression (7.3fold; p<0.001), was entirely prevented by the knockdown of Dyxin (0.8fold, p=n.s.). We show here that Dyxin, which has not been implicated in hypertrophy before, is significantly upregulated in cardiac hypertrophy. Moreover, it is both necessary and sufficient for cardiomyocyte hypertrophy, and this effect is mediated, at least in part by modulation of calcineurin signalling.


PPAR Research ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wen-Ying Wei ◽  
Zhen-Guo Ma ◽  
Si-Chi Xu ◽  
Ning Zhang ◽  
Qi-Zhu Tang

Peroxisome proliferator activated receptorγ(PPARγ) has been closely involved in the process of cardiovascular diseases. This study was to investigate whether pioglitazone (PIO), a PPARγagonist, could protect against pressure overload-induced cardiac hypertrophy. Mice were orally given PIO (2.5 mg/kg) from 1 week after aortic banding and continuing for 7 weeks. The morphological examination and biochemical analysis were used to evaluate the effects of PIO. Neonatal rat ventricular cardiomyocytes were also used to verify the protection of PIO against hypertrophy in vitro. The results in our study demonstrated that PIO remarkably inhibited hypertrophic response induced by aortic banding in vivo. Besides, PIO also suppressed cardiac fibrosis in vivo. PIO treatment also inhibited the activation of protein kinase B (AKT)/glycogen synthase kinase-3β(GSK3β) and mitogen-activated protein kinase (MAPK) in the heart. In addition, PIO alleviated angiotensin II-induced hypertrophic response in vitro. In conclusion, PIO could inhibit cardiac hypertrophy via attenuation of AKT/GSK3βand MAPK pathways.


Sign in / Sign up

Export Citation Format

Share Document