Streptococcus salivarius Isolates of Varying Acid Tolerance Exhibit F1F0-ATPase Conservation

2021 ◽  
pp. 1-4
Author(s):  
Lauren L. Allen ◽  
Nicholas C.K. Heng ◽  
Geoffrey R. Tompkins

Genes encoding the subunits of the membrane-bound F<sub>1</sub>F<sub>0</sub>-ATPase (responsible for exporting protons from the cytoplasm and contributing to acid tolerance) were sequenced for 24 non-mutans streptococci isolated from carious lesions. Isolates, mostly <i>Streptococcus salivarius</i>, displayed a continuum of acid tolerance thresholds ranging from pH 4.55 to 3.39, but amino acid alignments of F<sub>1</sub>F<sub>0</sub>-ATPase subunits revealed few non-synonymous substitutions and these were unrelated to acid tolerance. Thus, the F<sub>1</sub>F<sub>0</sub>-ATPase is highly-conserved among <i>S. salivarius</i> isolates despite varying acid tolerance thresholds, supporting the contention that acid tolerance is determined by the level of gene/protein expression rather than variation in molecular structure.

2004 ◽  
Vol 70 (9) ◽  
pp. 5315-5322 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Eric Altermann ◽  
Rebecca L. Hoover-Fitzula ◽  
Raul J. Cano ◽  
Todd R. Klaenhammer

ABSTRACT Amino acid decarboxylation-antiporter reactions are one of the most important systems for maintaining intracellular pH between physiological limits under acid stress. We analyzed the Lactobacillus acidophilus NCFM complete genome sequence and selected four open reading frames with similarities to genes involved with decarboxylation reactions involved in acid tolerance in several microorganisms. Putative genes encoding an ornithine decarboxylase, an amino acid permease, a glutamate γ-aminobutyrate antiporter, and a transcriptional regulator were disrupted by insertional inactivation. The ability of L. acidophilus to survive low-pH conditions, such as those encountered in the stomach or fermented dairy foods, was investigated and compared to the abilities of early- and late-stationary-phase cells of the mutants by challenging them with a variety of acidic conditions. All of the integrants were more sensitive to low pH than the parental strain. Interestingly, each integrant also exhibited an adaptive acid response during logarithmic growth, indicating that multiple mechanisms are present and orchestrated in L. acidophilus in response to acid challenge.


2000 ◽  
Vol 182 (17) ◽  
pp. 4738-4743 ◽  
Author(s):  
Brian J. Koebmann ◽  
Dan Nilsson ◽  
Oscar P. Kuipers ◽  
Peter R. Jensen

ABSTRACT The eight genes which encode the (F1Fo) H+-ATPase in Lactococcus lactis subsp.cremoris MG1363 were cloned and sequenced. The genes were organized in an operon with the gene order atpEBFHAGDC; i.e., the order of atpE and atpB is reversed with respect to the more typical bacterial organization. The deduced amino acid sequences of the corresponding H+-ATPase subunits showed significant homology with the subunits from other organisms. Results of Northern blot analysis showed a transcript at approximately 7 kb, which corresponds to the size of theatp operon. The transcription initiation site was mapped by primer extension and coincided with a standard promoter sequence. In order to analyze the importance of the H+-ATPase forL. lactis physiology, a mutant strain was constructed in which the original atp promoter on the chromosome was replaced with an inducible nisin promoter. When grown on GM17 plates the resulting strain was completely dependent on the presence of nisin for growth. These data demonstrate that the H+-ATPase is essential for growth of L. lactis under these conditions.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2357-2371 ◽  
Author(s):  
Simone Laska ◽  
Friedrich Lottspeich ◽  
Arnulf Kletzin

A sulfur reductase (SR) and a hydrogenase were purified from solubilized membrane fractions of anaerobically grown cells of the sulfur-dependent archaeon Acidianus ambivalens and the corresponding genes were sequenced. The SR reduced elemental sulfur with hydrogen as electron donor [45 U (mg protein)−1] in the presence of hydrogenase and either 2,3-dimethylnaphthoquinone (DMN) or cytochrome c in the enzyme assay. The SR could not be separated from the hydrogenase during purification without loss of activity, whereas the hydrogenase could be separated from the SR. The specific activity of the hydrogenase was 170 U (mg protein)−1 with methyl viologen and 833 U (mg protein)−1 with DMN as electron acceptors. Both holoenzymes showed molecular masses of 250 kDa. In SDS gels of active fractions, protein bands with apparent masses of 110 (SreA), 66 (HynL), 41 (HynS) and 29 kDa were present. Enriched hydrogenase fractions contained 14 μmol Fe and 2 μmol Ni (g protein)−1; in addition, 2·5 μmol Mo (g protein)−1 was found in the membrane fraction. Two overlapping genomic cosmid clones were sequenced, encoding a five-gene SR cluster (sre) including the 110 kDa subunit gene (sreA), and a 12-gene hydrogenase cluster (hyn) including the large and small subunit genes and genes encoding proteins required for the maturation of NiFe hydrogenases. A phylogenetic analysis of the SR amino acid sequence revealed that the protein belonged to the DMSO reductase family of molybdoenzymes and that the family showed a novel clustering. A model of sulfur respiration in Acidianus developed from the biochemical results and the data of the amino acid sequence comparisons is discussed.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 726
Author(s):  
Chung-Ling Lu ◽  
Jinoh Kim

Cells use membrane-bound carriers to transport cargo molecules like membrane proteins and soluble proteins, to their destinations. Many signaling receptors and ligands are synthesized in the endoplasmic reticulum and are transported to their destinations through intracellular trafficking pathways. Some of the signaling molecules play a critical role in craniofacial morphogenesis. Not surprisingly, variants in the genes encoding intracellular trafficking machinery can cause craniofacial diseases. Despite the fundamental importance of the trafficking pathways in craniofacial morphogenesis, relatively less emphasis is placed on this topic, thus far. Here, we describe craniofacial diseases caused by lesions in the intracellular trafficking machinery and possible treatment strategies for such diseases.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Tomofumi Mochizuki ◽  
Rie Ohara ◽  
Marilyn J. Roossinck

ABSTRACTThe effect of large-scale synonymous substitutions in a small icosahedral, single-stranded RNA viral genome on virulence, viral titer, and protein evolution were analyzed. The coat protein (CP) gene of the Fny stain of cucumber mosaic virus (CMV) was modified. We created four CP mutants in which all the codons of nine amino acids in the 5′ or 3′ half of the CP gene were replaced by either the most frequently or the least frequently used synonymous codons in monocot plants. When the dicot host (Nicotiana benthamiana) was inoculated with these four CP mutants, viral RNA titers in uninoculated symptomatic leaves decreased, while all mutants eventually showed mosaic symptoms similar to those for the wild type. The codon adaptation index of these four CP mutants against dicot genes was similar to those of the wild-type CP gene, indicating that the reduction of viral RNA titer was due to deleterious changes of the secondary structure of RNAs 3 and 4. When two 5′ mutants were serially passaged inN. benthamiana, viral RNA titers were rapidly restored but competitive fitness remained decreased. Although no nucleic acid changes were observed in the passaged wild-type CMV, one to three amino acid changes were observed in the synonymously mutated CP of each passaged virus, which were involved in recovery of viral RNA titer of 5′ mutants. Thus, we demonstrated that deleterious effects of the large-scale synonymous substitutions in the RNA viral genome facilitated the rapid amino acid mutation(s) in the CP to restore the viral RNA titer.IMPORTANCERecently, it has been known that synonymous substitutions in RNA virus genes affect viral pathogenicity and competitive fitness by alteration of global or local RNA secondary structure of the viral genome. We confirmed that large-scale synonymous substitutions in the CP gene of CMV resulted in decreased viral RNA titer. Importantly, when viral evolution was stimulated by serial-passage inoculation, viral RNA titer was rapidly restored, concurrent with a few amino acid changes in the CP. This novel finding indicates that the deleterious effects of large-scale nucleic acid mutations on viral RNA secondary structure are readily tolerated by structural changes in the CP, demonstrating a novel part of the adaptive evolution of an RNA viral genome. In addition, our experimental system for serial inoculation of large-scale synonymous mutants could uncover a role for new amino acid residues in the viral protein that have not been observed in the wild-type virus strains.


2001 ◽  
Vol 183 (9) ◽  
pp. 2724-2732 ◽  
Author(s):  
Céline Lévesque ◽  
Christian Vadeboncoeur ◽  
Fatiha Chandad ◽  
Michel Frenette

ABSTRACT Streptococcus salivarius, a gram-positive bacterium found in the human oral cavity, expresses flexible peritrichous fimbriae. In this paper, we report purification and partial characterization of S. salivarius fimbriae. Fimbriae were extracted by shearing the cell surface of hyperfimbriated mutant A37 (a spontaneous mutant of S. salivarius ATCC 25975) with glass beads. Preliminary experiments showed that S. salivariusfimbriae did not dissociate when they were incubated at 100°C in the presence of sodium dodecyl sulfate. This characteristic was used to separate them from other cell surface components by successive gel filtration chromatography procedures. Fimbriae with molecular masses ranging from 20 × 106 to 40 × 106Da were purified. Examination of purified fimbriae by electron microscopy revealed the presence of filamentous structures up to 1 μm long and 3 to 4 nm in diameter. Biochemical studies of purified fimbriae and an amino acid sequence analysis of a fimbrial internal peptide revealed that S. salivarius fimbriae were composed of a glycoprotein assembled into a filamentous structure resistant to dissociation. The internal amino acid sequence was composed of a repeated motif of two amino acids alternating with two modified residues: A/X/T-E-Q-M/φ, where X represents a modified amino acid residue and φ represents a blank cycle. Immunolocalization experiments also revealed that the fimbriae were associated with a wheat germ agglutinin-reactive carbohydrate. Immunolabeling experiments with antifimbria polyclonal antibodies showed that antigenically related fimbria-like structures were expressed in two other human oral streptococcal species, Streptococcus mitis andStreptococcus constellatus.


2014 ◽  
Vol 81 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Bhagyalakshmi Kalidass ◽  
Muhammad Farhan Ul-Haque ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
Jeremy D. Semrau

ABSTRACTIt is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that inMethylosinus trichosporiumOB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced byM. trichosporiumOB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and activein situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.


2014 ◽  
Vol 2014 (17) ◽  
pp. 3584-3591 ◽  
Author(s):  
Anton N. Tkachenko ◽  
Pavel K. Mykhailiuk ◽  
Dmytro S. Radchenko ◽  
Oleg Babii ◽  
Sergii Afonin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document