scholarly journals Study of Breakdown Voltage of Vegetables oil with SiO2 Nanoparticle Additive

Author(s):  
Muhammad Bin Yahya ◽  
Fatin Amirah Binti Amirrazli

<p>This paper investigates the suitability of vegetable oils to replace mineral oil based on its AC breakdown voltage, partial discharge and viscosity. The purpose of the study is to analyze the effect of the nanofluids containing SiO<sub>2</sub> nanoparticle in vegetables oils; namely, Coconut oil and Palm oil. A nanofluid is a fluid containing nanoparticles. However, the precise effects on the electrical properties is still uncertain. For decades, transformers use petroleum-based mineral oil because of its good dielectric properties and cooling capability. Coconut oil (CO) and Palm oil (PO) are thought to be   suitable alternatives to replace mineral oil as transformer oil as they are sustainable and available in plenty as natural resources.  It was obtained in this study that the breakdown voltages of these raw oils have fulfilled the standard specifications of good insulating liquid. However, the addition of SiO<sub>2</sub> did not improve the AC breakdown voltage and viscosity of coconut oil and palm oil at different temperatures. However, the addition of SiO<sub>2</sub> gave positive results in the values of partial discharges in which the presence of the nanoparticles has greatly reduced the mean volume of partial discharges for both coconut oil and palm oil.</p>

2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Nazera Ismail ◽  
Yanuar Z. Arief ◽  
Zuraimy Adzis ◽  
Shakira A. Azli ◽  
Abdul Azim A. Jamil ◽  
...  

This paper describes the properties of refined, bleached, deodorized palm oil (RBDPO) as having the potential to be used as insulating liquid. There are several important properties such as electrical breakdown, dielectric dissipation factor, specific gravity, flash point, viscosity and pour point of RBDPO that was measured and compared to commercial mineral oil which is largely in current use as insulating liquid in power transformers. Experimental results of the electrical properties revealed that the average breakdown voltage of the RBDPO sample, without the addition of water at room temperature, is 13.368 kV. The result also revealed that due to effect of water, the breakdown voltage is lower than that of commercial mineral oil (Hyrax). However, the flash point and the pour point of RBDPO is very high compared to mineral oil thus giving it advantageous possibility to be used safely as insulating liquid. The results showed that RBDPO is greatly influenced by water, causing the breakdown voltage to decrease and the dissipation factor to increase; this is attributable to the high amounts of dissolved water.


2021 ◽  
Vol 2 (2) ◽  
pp. 001-006
Author(s):  
Ansyori Ansyori ◽  
Irsyadi Yani ◽  
Eric Rahman

Isolation is a separator between conductors in electrical equipment that prevents flashover, resulting in a short circuit or electrical failure. Isolation is critical in electrical appliances, exceptionally High Voltage Power Equipment (HVPE), to ensure the safety of circuit breakers, capacitors, and transformers. In addition to being an isolator, the insulating liquid material also serves to cool the heat generated by electrical appliances. Isolator with mineral oil-based transformer has various environmental issues, including non-biodegradability, non-renewability, and rarity. Because it is environmentally safe and extensively used, virgin coconut oil (VCO) is an alternative transformer oil insulation. This study aims to determine the properties of Virgin Coconut Oil (VCO) breakdown voltage using the IEC 156 standard and oil temperature conditioning. According to the test results, the oil breakdown voltage before heating (at room temperature) is 14 kV, which is much below the IEC 156 standard, and the breakdown voltage after heating at 90 ° is 35 kV, and 110 ° is 40 kV, which is even higher than the IEC 156 requirement


2015 ◽  
Vol 785 ◽  
pp. 320-324 ◽  
Author(s):  
Nurul Izzatul Akma Katim ◽  
Mohd Taufiq Ishak ◽  
A.M. Ishak ◽  
M.Z.A.A. Kadir

The properties of Palm Oil (PO) and Coconut Oil (CO) offer the potential for transformers with non-toxicity, high fire and flash points and better environmental compatibility while compared with those filled with Mineral Oil (MO). This potential has led to intensive studies of electrical performance of biodegradable oil especially in evaluating the electrical performance under lightning impulse voltage in recent years. This paper presents the investigation on the impulse breakdown voltage of PO and CO in such a uniform field. The PO used in this study is Refined, Bleached and Deodorized Palm Oil (RBDPO) Olein type. Two testing methods, rising-voltage and up-and-down are considered for both oils with different gap distances (2.0 mm and 3.8 mm). Testing methods including rising-voltage method and up-and-down method have no notable influence on the breakdown voltages of RBDPOs and CO compared to MO.


2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Yusnida M. ◽  
Kiasatina Azmi ◽  
Mohd Azmier Ahmad ◽  
Zulkifli Ahmad ◽  
Mohamad Kamarol

Mineral oil (MO) works as an important electrical insulation and coolant in transformer which is non-biodegradable and nearly running out. Therefore, for sustainable and environmental concern, an alternative biodegradable insulating oil that potential to replace the mineral oil is introduced. In view of that, the breakdown strength characteristic of Refined Bleached Deodorized Palm Oil (RBDPO) and MO mixtures were investigated by varying the mixing percentage of RBDPO from 0% to 100% at 40oC. The results showed that the breakdown strength of the oil mixture abruptly decline to the minimum breakdown voltage of 50 kV at  20% of  RBDPO mixture and gradually increased when  the ratio of the RBDPO is added. The highest breakdown strength is achieved 87kv at 80% of RBDPO content. The result of kinematic viscosity is also presented.


2015 ◽  
Vol 1119 ◽  
pp. 175-178 ◽  
Author(s):  
Wittawat Saenkhumwong ◽  
Amnart Suksri

Transformer is one of the major component, which is the most important device in power system. Their lifetime depends upon liquid insulation that help transfer the heat out of its winding inside of transformer. Transformer oil uses mineral oil that is the most commonly used has very slow process on decomposition and non-biodegrade. This paper presents the investigation on breakdown voltage of two types of natural ester oils, including palm oil and soy bean based-on ZnO nanofluids. Nanofluids that use nanoparticles modified by use of surfactant that are suspended by process of sonication. Different fraction of nanoparticles were investigated from 0.1% - 0.5% by weight. The breakdown voltage were measured according to ASTM D877. The voltage breakdown strength increased significantly when nanoparticles were added in oils. The obtained results will enable transformer industry to develop liquid insulation dielectric for use in transformer in the future.


Author(s):  
Muhammad Bin Yahya ◽  
Raja Muhammad Khidir Raja Chik

High voltage power transformers commonly used petroleum-based mineral oil for cooling and insulation purposes. Researchers are looking for suitable vegetable oils as alternatives to mineral oil to be used as transformer oil. The alternative vegetable oils are biodegradable, non-toxic and environmentally friendly. They may require some processing and modification to improve some of their properties to ascertain their safe use in power and distribution transformers as well as in high voltage equipment. This paper presents a study on the AC breakdown voltages of Palm Oil (PO) and Coconut Oil (CO) with presence of an additive. PO and CO are chosen as they are locally produced oils in Malaysia and easily obtained. The type of additive used in this study is Titanium dioxide TiO<sub>2</sub>. TiO<sub>2</sub> nanoparticles was added into PO and CO at volume concentration of 0.1% to 0.5%. The effect of different gap distance of electrode 1.5mm, 2.5mm and 3.5mm was studied. The temperature of oil is controlled at 30<sup>o</sup>C. This paper provides a comparative assessment of breakdown properties through experimental investigation of PO and CO before and after the additive is added according to ASTM D1816 standard. From the experimental result, the PO have slightly higher breakdown voltage compared to CO. From all oil sample data recorded, it can be concluded that the breakdown voltage had increased to the increase in gap distance of electrode under presence of TiO<sub>2</sub>.


2019 ◽  
Vol 4 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Sanjida Islam ◽  
Md. Selim Hossain ◽  
Md. Farhamdur Reza ◽  
Md. Mamunur Rashid

Due to concerns over the world’s energy necessity and environmental impact of mineral oil, these conditions induce many researchers to search for substitute sources for insulating oil. Alternatives insulating oil with biodegradable characteristics, environment friendly and presented in different countries including Bangladesh such as vegetable oils have been proposed for high voltage applications. In this paper, a relative measurement of breakdown voltage through experimental investigation of coconut, mustard, soybean, and palm oil and their blend (which is available in Bangladesh and cost effective) is presented. Break down voltage was measure with different electrode configuration by changing gap distance. The results show that the blend of (50% coconut oil + 50% palm oil) got high breakdown voltage in mushroom-mushroom electrode, and other side in plane-plane type pure soybean oil got high breakdown voltage, compared with transformer oil. The presented result illustrate that the proposed mixed oil provides better performance than the rise husk oil.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Dedison Gasni ◽  
KM Abdul Razak ◽  
Ahmad Ridwan ◽  
Muhammad Arif

Penelitian ini bertujuan untuk mengetahui efek dari penambahan minyak kelapa dan sawit terhadap sifat fisik dan tribologi pelumas SAE 40. Vegetabel oil, seperti; minyak kelapa dan sawit, memiliki nilai viskositas indek yang tinggi dan sifat pelumasan yang baik terutama didaerah boundary lubrication jika dibandingkan dengan mineral oil (SAE 40). Hal ini disebabkan karena vegetabel oil memiliki kandungan fatty acids yang tidak dimiliki oleh mineral oil. Keunggulan lain dari minyak kelapa dan sawit adanya sifat yang ramah lingkungan karena mudah terurai di alam dan dapat diperbaharui. Pada penelitian ini sifat yang baik dari minyak kelapa dan sawit ini akan dimanfaatkan sebagai zat aditif pada minyak pelumas SAE 40. Pengujian dilakukan terhadap sifat fisik dan tribology dengan penambahan 5%, 10%, 15%, dan 20% berat dari minyak kelapa dan sawit ke dalam minyak pelumas SAE 40. Pengujian sifat fisik terdiri dari pengukuran viskositas pada temperatur 400C dan 1000C dan viskositas index. Pengujian sifat tribologi untuk menentukan keausan dan koefisien gesek berdasarkan ASTM G99 dengan menggunakan alat uji pin on disk. Dari hasil pengujian diperoleh bahwa dengan penambahan minyak kelapa dan sawit kedalam minyak pelumas SAE 40 terjadi peningkatan viskositas indeks. Peningkatan viskositas indeks sebanyak  17% dengan penambahan 20% minyak sawit. Terjadi perubahan sifat tribologi dengan penambahan minyak sawit, berupa penurunan keausan dan nilai koefisien gesek dibandingkan dengan penambahan minyak kelapa. This study aims to determine the effect of coconut and palm oils as additives to physical and tribological properties of SAE 40 lubricating oil . Vegetable oils, such as; coconut oil and palm oil, have high viscosity index and good lubrication properties, especially in boundary lubrication compared to mineral oil. This is due to vegetable oil having fatty acids that are not owned by mineral oil. The advantages of coconut oil and palm oil are environmentally friendly properties because they are biodegradable and renewable. In this study, the good properties of coconut and palm oils will be used as additives in SAE 40 lubricating oil. Tests are carried out on the physical and tribological properties with the addition of 5%, 10%, 15%, and 20% by weight of coconut and palm oils into SAE 40 lubricating oil. Physical properties testing consists of measuring viscosity at temperatures of 400C and 1000C and viscosity index. The tribological test is to determine wear and coefficient of friction based on ASTM G99 using a pin on disc test equipment. From the test results,  it was found that coconut and palm oils as additives into SAE 40 lubricating oil could increase in viscosity index. The increase of  the viscosity index was 17% by adding 20% of palm oil. There was a change of tribological properties in the form of decreasing on the wear and the coefficient of friction with the addition of palm oil compare to addition of coconut oil.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2676 ◽  
Author(s):  
Nurul Katim ◽  
Mohd Ishak ◽  
Nur Mohamad Amin ◽  
Mardhiah Abdul Hamid ◽  
Khairol Amali Ahmad ◽  
...  

This paper presents lightning (1.2/50 µs) breakdown voltages of palm oil (PO), coconut oil (CO) and mineral oil (MO) in a quasi-uniform sphere to sphere electric field at two gap distances. The type of PO used in this study is Refined Bleached Deodorized Palm Oil (RBDPO) Olein type. The effect of voltage polarities (positive and negative) and testing methods (rising voltage, up and down and multiple level) on the lightning breakdown performance were investigated. The results indicated that lightning breakdown voltages of CO and RBDPO are comparable to those of MO under various test conditions. The results indicated that there is no polarity effect for lightning impulse breakdown tests in a quasi-uniform field. The testing methods, including rising voltage method, up and down method and multiple level method have a notable influence on the breakdown voltages. The effect of the 50% breakdown voltage on rising voltage method, up and down method and multiple level method for RBDPO and CO is comparable to MO. The withstand voltage at 1% and 50% breakdown probabilities were obtained using the Normal distribution fitting on the cumulative probability plot of impulse shots. Based on a normal distribution fitting, withstand voltages 1% breakdown probability of POA were close to the MO. Finally, based on statistical studies and simulation using ANSYS software, the prediction formulas for breakdown voltage for larger gap distances for all samples were derived.


2019 ◽  
Vol 57 (3) ◽  
pp. 320
Author(s):  
Nguyen Van Dung ◽  
Nguyen Hoai Trung

This paper presents the results of electric breakdown properties of coconut oil with AC voltage. Experimental results show that breakdown voltage of new coconut oil is comparable to that of mineral oil. Ageing was seen to significantly affect the breakdown voltage of both coconut oil and mineral oil. However, influence extent of ageing on the breakdown voltage was higher for mineral oil. The antioxidant was seen to reduce the breakdown voltage of new coconut oil, but raised the breakdown voltage of aged coconut oil. The V-t characteristic of coconut oil is not as good as that of mineral oil.


Sign in / Sign up

Export Citation Format

Share Document