scholarly journals EQUIPMENT DESIGN AND TESTING TRANSFER VOLTAGE REFERRING TO IEC 156 STANDARD USING VIRGIN COCONUT OIL (VCO) WITH OIL TEMPERATURE CONDITIONING

2021 ◽  
Vol 2 (2) ◽  
pp. 001-006
Author(s):  
Ansyori Ansyori ◽  
Irsyadi Yani ◽  
Eric Rahman

Isolation is a separator between conductors in electrical equipment that prevents flashover, resulting in a short circuit or electrical failure. Isolation is critical in electrical appliances, exceptionally High Voltage Power Equipment (HVPE), to ensure the safety of circuit breakers, capacitors, and transformers. In addition to being an isolator, the insulating liquid material also serves to cool the heat generated by electrical appliances. Isolator with mineral oil-based transformer has various environmental issues, including non-biodegradability, non-renewability, and rarity. Because it is environmentally safe and extensively used, virgin coconut oil (VCO) is an alternative transformer oil insulation. This study aims to determine the properties of Virgin Coconut Oil (VCO) breakdown voltage using the IEC 156 standard and oil temperature conditioning. According to the test results, the oil breakdown voltage before heating (at room temperature) is 14 kV, which is much below the IEC 156 standard, and the breakdown voltage after heating at 90 ° is 35 kV, and 110 ° is 40 kV, which is even higher than the IEC 156 requirement

Author(s):  
Muhammad Bin Yahya ◽  
Fatin Amirah Binti Amirrazli

<p>This paper investigates the suitability of vegetable oils to replace mineral oil based on its AC breakdown voltage, partial discharge and viscosity. The purpose of the study is to analyze the effect of the nanofluids containing SiO<sub>2</sub> nanoparticle in vegetables oils; namely, Coconut oil and Palm oil. A nanofluid is a fluid containing nanoparticles. However, the precise effects on the electrical properties is still uncertain. For decades, transformers use petroleum-based mineral oil because of its good dielectric properties and cooling capability. Coconut oil (CO) and Palm oil (PO) are thought to be   suitable alternatives to replace mineral oil as transformer oil as they are sustainable and available in plenty as natural resources.  It was obtained in this study that the breakdown voltages of these raw oils have fulfilled the standard specifications of good insulating liquid. However, the addition of SiO<sub>2</sub> did not improve the AC breakdown voltage and viscosity of coconut oil and palm oil at different temperatures. However, the addition of SiO<sub>2</sub> gave positive results in the values of partial discharges in which the presence of the nanoparticles has greatly reduced the mean volume of partial discharges for both coconut oil and palm oil.</p>


Author(s):  
Muhammad Bin Yahya ◽  
Raja Muhammad Khidir Raja Chik

High voltage power transformers commonly used petroleum-based mineral oil for cooling and insulation purposes. Researchers are looking for suitable vegetable oils as alternatives to mineral oil to be used as transformer oil. The alternative vegetable oils are biodegradable, non-toxic and environmentally friendly. They may require some processing and modification to improve some of their properties to ascertain their safe use in power and distribution transformers as well as in high voltage equipment. This paper presents a study on the AC breakdown voltages of Palm Oil (PO) and Coconut Oil (CO) with presence of an additive. PO and CO are chosen as they are locally produced oils in Malaysia and easily obtained. The type of additive used in this study is Titanium dioxide TiO<sub>2</sub>. TiO<sub>2</sub> nanoparticles was added into PO and CO at volume concentration of 0.1% to 0.5%. The effect of different gap distance of electrode 1.5mm, 2.5mm and 3.5mm was studied. The temperature of oil is controlled at 30<sup>o</sup>C. This paper provides a comparative assessment of breakdown properties through experimental investigation of PO and CO before and after the additive is added according to ASTM D1816 standard. From the experimental result, the PO have slightly higher breakdown voltage compared to CO. From all oil sample data recorded, it can be concluded that the breakdown voltage had increased to the increase in gap distance of electrode under presence of TiO<sub>2</sub>.


Author(s):  
Sobhy. S. Dessouky ◽  
Saad A. Mohamed Abdelwahab ◽  
Mohammed Shaban

In most cases, The electrical insulation of the transformer oil will be exposed to different internal problems, such as short circuit , over voltage, over load, over excitation and etcetera. The insulation of transformer will be sever decreased into minimum value. This requires some treatments of oil liquid ,such as refining or replacing the damaged oil with a new, which is a very expensive process. In this paper, the Insulation Resistance (IR) of transformer oil will be enhanced by using nanoparticles NPs. Titanium oxide (TiO2) one of them, which will be used in this experiment. The (NPs) improve the insulation, physical and chemical properties of transformer oil. The breakdown voltage will be tested for pure oil and after the addition (TiO2) according to IEC standard methods. The results of this study indicated that addition of TiO2 in certain quantities of pure oils can be affected the Insulation Resistance (IR) and electrical breakdown voltage. A comparative study was conducted to identify the effects of using nanoparticles in pure transformer oils to ensure their effect on electrical Insulation Resistance (IR). The results are indicated an increasing in the breakdown voltage and the dissipation factor of the transformer oil, thus results using nanoparticles oil higher than pure oil.


2019 ◽  
Vol 4 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Sanjida Islam ◽  
Md. Selim Hossain ◽  
Md. Farhamdur Reza ◽  
Md. Mamunur Rashid

Due to concerns over the world’s energy necessity and environmental impact of mineral oil, these conditions induce many researchers to search for substitute sources for insulating oil. Alternatives insulating oil with biodegradable characteristics, environment friendly and presented in different countries including Bangladesh such as vegetable oils have been proposed for high voltage applications. In this paper, a relative measurement of breakdown voltage through experimental investigation of coconut, mustard, soybean, and palm oil and their blend (which is available in Bangladesh and cost effective) is presented. Break down voltage was measure with different electrode configuration by changing gap distance. The results show that the blend of (50% coconut oil + 50% palm oil) got high breakdown voltage in mushroom-mushroom electrode, and other side in plane-plane type pure soybean oil got high breakdown voltage, compared with transformer oil. The presented result illustrate that the proposed mixed oil provides better performance than the rise husk oil.


2019 ◽  
Vol 8 (3) ◽  
pp. 1154-1161
Author(s):  
Siti Syafiqah Mat Sauki ◽  
Nor Asiah Muhamad ◽  
Zawani Amirah Rasid

Mineral oil played an important role as insulating liquid such as to reduce failure, ageing effect, increase the life span and heat transfer agent. Mineral oil had a good dielectric strength and cooling performance but it had serious negative environmental impact like non-biodegradable, non-renewable resource and difficult to dispose when it deteriorates completely. Hence, virgin coconut oil (VCO) was chosen as alternative to replace mineral oil since it biodegrades completely without toxic and easy to get in the tropical country. Three dielectric tests were conducted to investigate the dielectric properties of VCO. Those were breakdown voltage, water content and kinematic viscosity. A study about the effect of the moisture level of VCO on the breakdown voltage and kinematic viscosity was also presented. VCO and mineral oil also undergone heating process to reduce moisture in sample. The study showed that VCO has good potential breakdown voltage with the ability to absorb a lot of moisture keeping the KRAFT paper dry. However, VCO had very high kinematic viscosity compared to mineral oil. Further, the rate of breakdown voltage decreases with increasing of moisture of VCO was lower than mineral oil.


2015 ◽  
Vol 793 ◽  
pp. 187-191
Author(s):  
A.A.H. Zaidi ◽  
Nuriziani Hussin ◽  
Dina Maizana

The application of mineral oil in transformer is prominently act as and insulator and a coolant liquid. More often, petroleum based oil is used because most its elements are good to act as insulator such as excellent heat transfer and low in viscosity. Anyhow, the usage of mineral oil in transformer is possibly hazardous to the environment considering that it is poor biodegradable liquid where when a spill or leakage happens, it could pollute the environment surroundings. Moreover, it is known as a non-renewable energy sources, the world will be out of it someday near future. For this reason, a new option of transformer insulation liquid is studied. Vegetable oil is a fully biodegradable insulating liquid and for this paper, coconut oil is used as the insulator. In this paper, it concentrates on the performance of the transformer before and after virgin coconut oil is applied in a single-phase step down transformer that use the 220 V supply and 50 Hz frequency. Transformer is connected to 110V induction motor as load and has been test in two conditions, dry and after virgin coconut oil is applied. Comparison is made from both results and clearly shown a good improvement when virgin coconut oil is used as insulation oil.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Aulia Alfi

Virgin Coconut Oil (VCO) adalah bahan alami yang memiliki sifat antimikroba (antivirus, antibakteri, dan antijamur). Sehingga VCO dapat memberikan efek pengawet pada bahan makanan, salah satunya adalah roti manis. Penelitian ini dilakukan untuk mengevaluasi pengaruh VCO terhadap karakteristik (fisik dan kimia) dan umur simpan roti manis. Roti manis dianalisis secara fisik (tekstur dan porositas) dan kimia (kadar air, kadar abu, kadar lemak, kadar protein, dan kandungan karbohidrat), dan analisis umur simpan dengan FFA, uji organoleptik dan jamur setiap dua hari selama delapan hari penyimpanan di suhu ruang. Variasi perlakuan roti manis adalah dari rasio konsentrasi VCO: margarin: mentega, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). Hasil penelitian menunjukkan bahwa VCO tidak memiliki pengaruh yang signifikan terhadap karakteristik fisik dan karakteristik kimia roti manis. Namun, VCO berpengaruh signifikan terhadap kadar air roti manis yang dihasilkan, roti manis K memiliki kadar air tertinggi (22,36%) dan berbeda dengan sampel roti manis lainnya. VCO secara efektif menghambat pertumbuhan jamur di roti manis pada konsentrasi 8%, 12%, dan 16%. Roti manis K dan A memiliki masa simpan 4 hari, sedangkan roti manis B, C, dan D memiliki masa simpan 6 hari.Kata kunci: VCO, roti manis, karakteristik, umur simpanABSTRACTVirgin Coconut Oil (VCO) is a natural ingredient that has antimicrobial (antiviral, antibacterial, and antifungal) properties. So that VCO can provide a preservative effect on food ingredients, one of which is sweet bread. This research was conducted to evaluate the effect of VCO on characteristics (physical and chemical) and shelf life of sweet bread. Sweet bread was analyzed physically (texture and porosity) and chemistry (moisture content, ash content, fat content, protein content, and carbohydrate content), and shelf life analysis with FFA, organoleptic and mold tests every two days for eight days of storage at ambient temperature. Treatment variations of sweet breads is from the ratio of the concentration of VCO: margarine: butter, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). The results showed that VCO did not have a significant effect on the physical characteristics and chemical characteristics of sweet bread. However, the VCO has a significant effect on the water content of the sweet bread produced, sweet bread K has the highest moisture content (22,36%) and it is different from other sweet bread samples. VCO effectively inhibits the growth of sweet bread mold at concentrations of 8%, 12%, and 16%. K and A sweet bread has a shelf life of 4 days, while sweet breads B, C, and D have a shelf life of 6 days.Keywords: VCO, sweet bread, characteristics, shelf life


2016 ◽  
Vol 1 (1) ◽  
pp. 22
Author(s):  
Nazli Zainuddin ◽  
Nurul Azira Mohd Shah ◽  
Rosdan Salim

Introduction: The role of virgin coconut oil in the treatment of allergic rhinitis is controversial. Thus, the aim of the present study is to determine the effects of virgin coconut oil ingestion, in addition to standard medications, on allergic rhinitis. We also studied the side effects of consumption of virgin coconut oil. Methods: Fifty two subjects were equally divided into test and control groups. All subjects received a daily dose of 10mg of loratadine for 28 days. The test group was given 10ml of virgin coconut oil three times a day in addition to loratadine. The symptoms of allergic rhinitis were scored at the beginning and end of the study. Results:, the symptom score were divided into nasal and non-nasal symptom scores. Sneezing score showed a significant difference, however the score was more in control group than test group, indicating that improvement in symptom was more in control group. The rest of the nasal symptom and non-nasal symptom score showed no significant difference between test and control groups. Approximately 58% of the test subjects developed side effects from consumption of virgin coconut oil, mainly gastrointestinal side effects. Conclusion: In the present study, ingestion of virgin coconut oil does not improve the overall and individual symptoms of allergic rhinitis, furthermore it has side effects.


Sign in / Sign up

Export Citation Format

Share Document