scholarly journals Smart halal recognizer for muslim consumers

Author(s):  
Siti Fatimah Abdul Razak ◽  
Chin Poo Lee ◽  
Kian Ming Lim ◽  
Pei Xin Tee

<span>Halal is the term used for permissible food according to Islamic dietary law. Indicators such as Halal logo have been used to facilitate Muslims in identifying Halal food. In Malaysia, the Department of Islamic Development (JAKIM) has introduced a standard Halal logo for locally manufactured products and currently recognizes 67 Islamic bodies in 41 countries around the world as certification bodies for products imported into Malaysia. Therefore, a more practical way is required to assist Muslims in recognizing various forms of Halal logos on food packaging. A neural network (NN) approach is proposed to recognize authentic and recognized Halal logo on imported products. A dataset of available and recognized Halal logo images worldwide will be created for this purpose. The dataset will be used to train and test the performance of the learning algorithm to recognize logo of recognized foreign bodies by JAKIM. The approach is expected to complement current facilities for verification using Short Messaging Services (SMS) and web portal. The approach is assumed to be more efficient and accurate for Halal logo verification which eventually could win the trust of Halal product consumers and support the Halal industry in Malaysia.</span>

Author(s):  
Sercan Demirci ◽  
Durmuş Özkan Şahin ◽  
Ibrahim Halil Toprak

Skin cancer, which is one of the most common types of cancer in the world, is a malignant growth seen on the skin due to various reasons. There was an increase in the number of the cases of skin cancer nearly 200% between 2004-2009. Since the ozone layer is depleting, harmful rays reflected from the sun cannot be filtered. In this case, the likelihood of skin cancer will increase over the years and pose more risks for human beings. Early diagnosis is very significant as in all types of cancers. In this study, a mobile application is developed in order to detect whether the skin spots photographed by using the machine learning technique for early diagnosis have a suspicion of skin cancer. Thus, an auxiliary decision support system is developed that can be used both by the clinicians and individuals. For cases that are predicted to have a risk higher than a certain rate by the machine learning algorithm, early diagnosis could be initiated for the patients by consulting a physician when the case is considered to have a higher risk by machine learning algorithm.


2020 ◽  
Vol 214 ◽  
pp. 03005
Author(s):  
Yang YANG ◽  
Rong CHEN ◽  
Xiao BAI ◽  
DeHeng CHEN

The payment card industry has grown increasingly with the development of online business. However, payment card fraud has become a serious problem around the world. Companies and banks lost huge amounts of dollars annually due to fraud. It is necessary to investigate a learning algorithm to detect fraud in finance transaction automatically. In this paper, we put forward a fraud detection algorithm by using neural network. The neural network model and final result will be described to show the superiority of this model.


Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Author(s):  
Revati Kadu ◽  
U. A. Belorkar

One of the most common and augmenting health problems in the world are related to skin. The most  unpredictable and one of the most difficult entities to automatically detect and evaluate is the human skin disease because of complexities of texture, tone, presence of hair and other distinctive features. Many cases of skin diseases in the world have triggered a need to develop an effective automated screening method for detection and diagnosis of the area of disease. Therefore the objective of this work is to develop a new technique for automated detection and analysis of the skin disease images based on color and texture information for skin disease screening. In this paper, system is proposed which detects the skin diseases using Wavelet Techniques and Artificial Neural Network. This paper presents a wavelet-based texture analysis method for classification of five types of skin diseases. The method applies tree-structured wavelet transform on different color channels of red, green and blue dermoscopy images, and employs various statistical measures and ratios on wavelet coefficients. In all 99 unique features are extracted from the image. By using Artificial Neural Network, the system successfully detects different types of dermatological skin diseases. It consists of mainly three phases image processing, training phase, detection  and classification phase.


Author(s):  
A John. ◽  
D. Praveen Dominic ◽  
M. Adimoolam ◽  
N. M. Balamurugan

Background:: Predictive analytics has a multiplicity of statistical schemes from predictive modelling, data mining, machine learning. It scrutinizes present and chronological data to make predictions about expectations or if not unexplained measures. Most predictive models are used for business analytics to overcome loses and profit gaining. Predictive analytics is used to exploit the pattern in old and historical data. Objective: People used to follow some strategies for predicting stock value to invest in the more profit-gaining stocks and those strategies to search the stock market prices which are incorporated in some intelligent methods and tools. Such strategies will increase the investor’s profits and also minimize their risks. So prediction plays a vital role in stock market gaining and is also a very intricate and challenging process. Method: The proposed optimized strategies are the Deep Neural Network with Stochastic Gradient for stock prediction. The Neural Network is trained using Back-propagation neural networks algorithm and stochastic gradient descent algorithm as optimal strategies. Results: The experiment is conducted for stock market price prediction using python language with the visual package. In this experiment RELIANCE.NS, TATAMOTORS.NS, and TATAGLOBAL.NS dataset are taken as input dataset and it is downloaded from National Stock Exchange site. The artificial neural network component including Deep Learning model is most effective for more than 100,000 data points to train this model. This proposed model is developed on daily prices of stock market price to understand how to build model with better performance than existing national exchange method.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter M. Maloca ◽  
Philipp L. Müller ◽  
Aaron Y. Lee ◽  
Adnan Tufail ◽  
Konstantinos Balaskas ◽  
...  

AbstractMachine learning has greatly facilitated the analysis of medical data, while the internal operations usually remain intransparent. To better comprehend these opaque procedures, a convolutional neural network for optical coherence tomography image segmentation was enhanced with a Traceable Relevance Explainability (T-REX) technique. The proposed application was based on three components: ground truth generation by multiple graders, calculation of Hamming distances among graders and the machine learning algorithm, as well as a smart data visualization (‘neural recording’). An overall average variability of 1.75% between the human graders and the algorithm was found, slightly minor to 2.02% among human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visualized. The convolutional neural network balanced between graders and allowed for modifiable predictions dependent on the compartment. Using the proposed T-REX setup, machine learning processes could be rendered more transparent and understandable, possibly leading to optimized applications.


Author(s):  
Baiyu Peng ◽  
Qi Sun ◽  
Shengbo Eben Li ◽  
Dongsuk Kum ◽  
Yuming Yin ◽  
...  

AbstractRecent years have seen the rapid development of autonomous driving systems, which are typically designed in a hierarchical architecture or an end-to-end architecture. The hierarchical architecture is always complicated and hard to design, while the end-to-end architecture is more promising due to its simple structure. This paper puts forward an end-to-end autonomous driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network, making it possible for the vehicle to learn end-to-end driving by itself. This paper firstly proposes an architecture for the end-to-end lane-keeping task. Unlike the traditional image-only state space, the presented state space is composed of both camera images and vehicle motion information. Then corresponding dueling neural network structure is introduced, which reduces the variance and improves sampling efficiency. Thirdly, the proposed method is applied to The Open Racing Car Simulator (TORCS) to demonstrate its great performance, where it surpasses human drivers. Finally, the saliency map of the neural network is visualized, which indicates the trained network drives by observing the lane lines. A video for the presented work is available online, https://youtu.be/76ciJmIHMD8 or https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html.


Sign in / Sign up

Export Citation Format

Share Document