scholarly journals Performance analysis of handover parameter for natural disaster in LTE-A network

Author(s):  
Azita Laily Yusof ◽  
Ainnur Eiza Mohd Azhar ◽  
Norsuzila Ya’acob

<span>Natural disaster is an unpredictable event which can cause service communication disruption. The disruption of service communication can be divided into three cases which are power outage, broken backhaul and physical destruction by disaster. This paper focuses on power outage case. Although each base stations equipped with backup batteries, it only last for several hours. After natural disaster hit certain areas, traffic is highly congested due to panic and rescue operation of lifesaving. This scenario will drain the backup batteries quickly. In order to limit the UEs’ connection to the affected base station, this research proposed to adjust Received Signal Strength (RSS) based on parameter called as a distance fraction coefficient, α so that the affected coverage area is reduced when in disaster area situation. The parameter is added in the path loss equation and later in the RSS equation. The numerical results show the RSS improved whereby α=0.2 gives the optimal value and therefore limit the incoming traffic to the affected base station. </span>

Author(s):  
Azita Laily Yusof ◽  
Ainnur Eiza Azhar ◽  
Norsuzila Ya’acob

This paper presents Self-Select Target Neighboring Base Station Assisted Handover for Natural Disaster in LTE-A Network. In this study, two parameters have been introduced which are known as received signal strength of user (RSS) and left over power of base station (LoP) in order to maintained good QoS of UE and prolong battery life of base station when there is power outage. A distance fraction coefficient (α) with value 0.2 has been introduced to RSS expression to improve the signal strength by reducing the area that the UE’s covered. Both parameters are used to calculate weighted-average score (WAS) for selection of potential target base station to avoid more users to connect to the affected base station. From the results, sRSS=0.8 gave the highest WAS with value of WAS=0.84 for users from 1 to 100 compares to other value of sRSS. Moreover, by using no natural disaster condition as reference, Condition 1 (wRSS=80%, wLoP=20% ) with the lowest percentage of improvement (3.75%.) will be chosen as handover condition as it near to base station, avoid overloaded users to the affected base station, hence prolong battery life as it only use 20% of battery usage.


Author(s):  
O.E. Ogunsola ◽  
◽  
O. Adeleke ◽  
O.I. Olaluwoye

The recent migration of most GSM service providers’ networks in Ibadan from 3G to 4G, in preparation for the deployment of 5G technology in the nation necessitated the need to re-examine the GSM networks’ mobility and coverage within the micro cells in-between a Base Station and a Mobile Station. This attempt is aimed at using existing Path Loss Propagation Models in proffering solutions to the negative consequences usually associated with call drops in the Urban and Suburban Areas of Ibadan due to inability of channels to handover as a result of path loss. The path loss (dB) analysis was carried out by measuring the Received Signal Strength RSS (dBm) at distances ranging from 0.05 km to 4 km in-between Base Stations and Mobile Stations using the factory fitted installed RSS software on Android phones. These measurements were taken for three weeks within the urban and suburban areas of the University of Ibadan campus, and its neighborhood community of Agbowo for ten selected existing Base Stations from four of the nationwide GSM Service Providers (SP1, SP2, SP3 and SP4) in Nigeria. The variation of path loss with the RSS for GSM Service Provider (SP1) propagating at 955MHz (reference distance of 0.05km), 1850MHz and 2120MHz, were 66.03 dB, 71.77 dB and 72.96 dB, respectively. However, at 4 km the path loss had risen to 101.59dB for 955MHz, 103.81dB for 1850MHz and 105dB for 2120MHz. Also, the path loss for the GSM service provider (SP2) propagating at 960MHz (reference distance of 0.05km), 1865MHz and 2150MHz were 66.07 dB, 71.84 dB and 73.08 dB, respectively. Moreover, in a similar manner to the SP1 service provider, at 4 km the path loss had risen to 104.14dB for 960MHz, 109.9dB for 1865MHz and 111.14dB for 2150MHz. Furthermore, the path loss for the GSM service provider (SP3) propagating at 950MHz (reference distance of 0.05km), 1835MHz and 2130MHz were 65.98 dB, 71.70 dB and 73.00 dB, respectively. Likewise, as was in the case of the SP1 and SP2 Service providers, the path loss at 4 km had risen to 104.05dB for 950MHz, 109.76dB for 1835MHz and 111.06dB for 2130MHz. Also, the path loss for the GSM service provider (SP4) propagating at 940MHz (reference distance of 0.05km), 1880MHz and 2140MHz, were 65.47 dB, 71.46 dB and 72.23 dB, respectively. Moreover, the path loss at 4 km had risen to 103.53dB for 940MHz, 109.52dB for 1880MHz and 110.29dB for 2140 MHz as was the case with the other GSM Service providers (SP!, SP2 and SP3) considered .Thus, the path loss increases with distance within the microcells of base stations. However, the path loss model with minimum path loss (dB) at a given distance enhances good coverage and handover postponement. Moreover, the mean square error values used in obtaining the accuracy between the measured and the Empirical models were 17.15dB, 59.69dB, 48.46dB, 60.52dB and 40.07dB for the C-model, Cost-OH, Sub-O, Lee-model and experimental model, respectively. . Key words: GSM networks, Base station, Mobile station, Signal strength, GSM service provider


2019 ◽  
Vol 9 (4) ◽  
pp. 43-48
Author(s):  
Rizal Aji Istantowi

4G LTE networks in big cities are already well available. Meanwhile, on small to medium-sized cities, the 4G LTE network is not evenly distributed and maximized. This study chooses the variable tilting antenna to the coverage area, because in sending information from a base station using an antenna. The average RSRP value (dBm) of the existing base station in the calculation with a distance of 200 m is -122.90 dBm, a distance of 500 m is -136.79 dBm, and a distance of 1000 m -147.30 dBm. Meanwhile, in the simulation with a distance of 200 m of -108.22 dBm, a distance of 500 m of -121.81 dBm, and a distance of 1000 m of -132.69 dBm. The coverage area value of the existing base station in the calculation is 5.29%, while in the simulation it is 11.18%. The average RSRP value (dBm) at optimal conditions for calculations at a distance of 200 m is -80.13 dBm, at a distance of 500 m is -94.03 dBm and at a distance of 1000 m is -104.56 dBm. Meanwhile, the simulation at a distance of 200 m is -98.09 dBm, at a distance of 500 m is -112.79 dBm and at a distance of 1000 m is -123.31 dBm. The value of the coverage area for the calculation is 20.32%, while for the simulation it is 15.01%. The current need for base stations in Trenggalek District that has been met is 68%.


2016 ◽  
Vol 3 (2) ◽  
pp. 20-25
Author(s):  
Adith Ismail Shaleh

Telecommunications support equipment and systems play a vital role in the network. Multi-band sectoral antennas are starting to replace single-band sectoral antennas at several base stations. The use of a single-band antenna that requires many antennas at the base station is not practical. The following research is conducting tests to evaluate the coverage area, rx signal level and network throughput produced by a multi-band sectoral antenna. Comparison of coverage area calculation using the walfisch-ikegami method. Testing the coverage area with the rx signal level utilizes a drive test so that the optimization of the success of the multi-band antenna is paired to obtain data to support decision making and determine the efficiency of the device in urban areas. From the test results of these 3 factors, the network efficiency generated by multi-band sectoral antennas and single-band sectoral antennas on the antenna coverage area shows that the results of single-band antennas are further than multi-band antennas. Meanwhile, on the signal side that is measured in the drive test process, the 2G network produced by the multi band antenna is better, for the 3G network the single band antenna is better. The 3G network throughput measurement data shows that the uplink access speed results are not good, because the good throughput value is only 42.54%. Measurements on the downlink side are also in poor condition, because the good throughput value is 38.57%.


Author(s):  
V. O. A. Akpaida ◽  
F. I. Anyasi ◽  
S. I. Uzairue ◽  
A. I. Idim

This article involves the site specific determination of an outdoor path loss model and Signal penetration level in some selected modern residential and office apartments in Ogbomosho, Oyo State. Measurements of signal strength and its associated location parameters referenced globally were carried out. Propagation path loss characteristics of Ogbomosho were investigated using three different locations with distinctively different yet modern building materials. Consequently, received signal strength (RSS) was measured at a distance d in meters, from appropriate base stations for various environments investigated. The data were analyzed to determine the propagation path loss exponent, signal penetration level and path loss characteristics. From calculations, the average building penetration losses were, 5.93dBm, 6.40dBm and 6.1dBm outside the hollow blocks B1, solid blocks B2 and hollow blocks mixed with pre cast asbestos B3, buildings respectively with a corresponding path loss exponent values of, 3.77, 3.80 and 3.63. Models were developed and validated, and used to predict the received power inside specific buildings. Moreover, the propagation models developed for the different building types can be used to predict the respective signal level within the building types, once the transmitter – receiver distance is known. The readings obtained from the developed models were compared with both the measured values and values computed using some existing models with satisfactory results obtained.


2021 ◽  
Author(s):  
Abid Jan

Existing cellular networks remain operational throughout the year irrespective of traffic. The usage of Coordinated Multipoint (CoMP) transmission to provide service in the coverage area of a switched off base station (BS) during off-peak traffic hours has been investigated in this work. The switching off of a BS reduces its energy consumption to zero, however to cover the switched off BS coverage area by neighbouring BS’s, CoMP transmission causes an increase in energy consumption of the neighbouring BS’s. With increasing the number of base stations taking part in CoMP transmission the power consumption of CoMP base stations and site air conditioning unit increases. Results show that the aggressive usage of CoMP is not feasible in most of the twelve switching modes investigated. From the Energy Efficiency Ratio the most energy efficient switching mode is identified. It is then applied to part of a cellular network and the amount of power saving and Carbon Dioxide equivalent (CO2e) is determined. It is found that within a network of 42 cells 7.26% power can be saved by switching off seven base stations during off-peak traffic hours.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad Nour Hindia ◽  
Ahmed Wasif Reza ◽  
Kamarul Ariffin Noordin

Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms’ performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 717-727
Author(s):  
Sharmini Enoch ◽  
Ifiok Otung ◽  
Naeem Azeemi ◽  
M.A. Habli

There have been remarkable advancements in the field of broadband wireless access (BFWA) technologies. These technologies operate in microwave frequencies where rain attenuation is the most important factor leading to signal impairments. The use of cell site diversity (CSD) can help in overcoming the signal fading. During the event of rain, when the signal level falls below a particular threshold, the subscriber station switches to another base station in the coverage area. The CSD gain bears strong correlation with the angular separation between the various base stations. This paper analyses the effects of CSD gain on angular separation.


Author(s):  
Farah Akif ◽  
Aqdas Malik ◽  
Ijaz Qureshi ◽  
Ayesha Abassi

With the advancement in wireless communication technology, the ease of accessibility and increasing coverage area is a major challenge for service providers. Network densification through Small cell Base Stations (SBS) integration in Heterogeneous Networks (HetNets) promises to improve network performance for cell edge users. Since providing wired backhaul for small cells is not cost effective or practical, the third-Generation Partnership Project (3GPP) has developed architecture for self-backhaul known as Integrated Access and Backhaul (IAB) for Fifth Generation (5G). This allows for Main Base Station (MBS) resources to be shared between SBS and MBS users. However, fair and efficient division of MBS resources remains a problem to be addressed. We develop a novel transmit antenna selection/partitioning technique for taking advantage of IAB 5G standard for Massive Multiple Input Multiple Output (MIMO) HetNets. Transmit antenna resources are divided among access for MBS users and for providing wireless backhaul for SBS. We develop A Genetic Algorithm (GA) based Transmit Antenna Selection (TAS) scheme and compare with random selection, eigenvalue-based selection and bandwidth portioning. Our analysis show that GA based TAS has the ability to converge to an optimum antenna subset providing better rate coverage. Furthermore, we also signify the performance of TAS based partitioning over bandwidth partitioning and also show user association can also be controlled using number of antennas reserved for access or backhaul.


2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110391
Author(s):  
Yuvaraja Teekaraman ◽  
Hariprasath Manoharan ◽  
Ramya Kuppusamy ◽  
Shabana Urooj ◽  
Fadwa Alrowais

This article focuses on intensifying in-vehicle biological wireless sensor networks for the persistence of monitoring the information on a precise vehicle. The wireless sensor networks will have enormous amount of nodules which are interrelated with each other. Therefore, these wireless sensor networks can be installed on a vehicle not only for monitoring perseverance but also for corroborating security with the support of a Global Positioning System expedient. In addition, the projected work focuses on reliable communiqué which is defined in terms of network reliability with discrepancy in reporting rate at each base station. To validate the efficiency of the proposed scheme, the simulation has been abetted using network simulator (NS2) and the outcomes indicate that when the sensors are installed, a robust system can be obtained with improved data transfer between the base stations. Moreover, a fortified in-vehicular sensor can be fixed in each vehicle with minimized path loss.


Sign in / Sign up

Export Citation Format

Share Document