scholarly journals Fast and accurate primary user detection with machine learning techniques for cognitive radio networks

Author(s):  
G. A. Pethunachiyar ◽  
B. Sankaragomathi

<p class="IJASEITAbtract"><span>Spectrum decision is an important and crucial task for the secondary user to avail the unlicensed spectrum for transmission. Managing the spectrum is an efficient one for spectrum sensing. Determining the primary user presence in the spectrum is an essential work for using the licensed spectrum of primary user. The information which lacks in managing the spectrum are the information about the primary user presence, accuracy in determining the existence of user in the spectrum, the cost for computation and difficult in finding the user in low signal-to noise ratio (SNR) values. The proposed system overcomes the above limitations. In the proposed system, the various techniques of machine learning like decision tree, support vector machines, naive bayes, ensemble based trees, nearest neighbour’s and logistic regression are used for testing the algorithm. As a first step, the spectrum sensing is done in two stages with Orthogonal Frequency Division Multiplexing and Energy Detection algorithm at the various values of SNR. The results generated from the above algorithm is used for database generation. Next, the different machine learning techniques are trained and compared for the results produced by different algorithms with the characteristics like speed, time taken for training and accuracy in prediction. The accuracy and finding the presence of the user in the spectrum at low SNR values are achieved by all the algorithms. The computation cost of the algorithm differs from each other. Among the tested techniques, k-nearest neighbour (KNN) algorithm produces the better performance in a minimized time.</span></p>

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhiyuan Shen ◽  
Qianqian Wang

The traditional energy detection algorithm has been widely used in the field of signal detection, and a variety of improved algorithms have been derived. In the case of low signal-to-noise ratio, existing methods have shortcomings on achieving fast and accurate spectrum sensing that need to be resolved. This work proposes a normalized-variance-detection method based on compression sensing measurements of received signal. The discrete cosine transform sensing matrix is used to compress the signal, whose normalized variance is then calculated before being used as the testing variable for detecting the primary user signal. Taking the detection results as historical data into consideration, the classification model is obtained after training by applying a support vector machine for classifying and predicting test signals. Simulation results show that the proposed method outperforms the current state-of-the-art approaches by achieving faster and more accurate spectrum occupancy decisions.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4715 ◽  
Author(s):  
Yanqueleth Molina-Tenorio ◽  
Alfonso Prieto-Guerrero ◽  
Rafael Aguilar-Gonzalez ◽  
Silvia Ruiz-Boqué

In this work, three specific machine learning techniques (neural networks, expectation maximization and k-means) are applied to a multiband spectrum sensing technique for cognitive radios. All of them have been used as a classifier using the approximation coefficients from a Multiresolution Analysis in order to detect presence of one or multiple primary users in a wideband spectrum. Methods were tested on simulated and real signals showing a good performance. The results presented of these three methods are effective options for detecting primary user transmission on the multiband spectrum. These methodologies work for 99% of cases under simulated signals of SNR higher than 0 dB and are feasible in the case of real signals.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Author(s):  
Manjunath K. E. ◽  
Yogeen S. Honnavar ◽  
Rakesh Pritmani ◽  
Sethuraman K.

The objective of this work is to develop methodologies to detect, and report the noncompliant images with respect to indian space research organisation (ISRO) recruitment requirements. The recruitment software hosted at U. R. rao satellite centre (URSC) is responsible for handling recruitment activities of ISRO. Large number of online applications are received for each post advertised. In many cases, it is observed that the candidates are uploading either wrong or non-compliant images of the required documents. By non-compliant images, we mean images which do not have faces or there is not enough clarity in the faces present in the images uploaded. In this work, we attempt to address two specific problems namely: 1) To recognise image uploaded to recruitment portal contains a human face or not. This is addressed using a face detection algorithm. 2) To check whether images uploaded by two or more applications are same or not. This is achieved by using machine learning (ML) algorithms to generate similarity score between two images, and then identify the duplicate images. Screening of valid applications becomes very challenging as the verification of such images using a manual process is very time consuming and requires large human efforts. Hence, we propose novel ML techniques to determine duplicate and non-face images in the applications received by the recruitment portal.


Sign in / Sign up

Export Citation Format

Share Document