scholarly journals An experimental study of PV/T system using parabolic reflectors and heat exchanger

Author(s):  
Benlaria Ismail ◽  
Belhadj Mohammed ◽  
Othmane Abdelkhalek ◽  
Sabouni Elhadj

<p>Photovoltaic (PV) systems can be made more efficient by forcing the PV panel to operate at its maximum point power due to the electrical properties of photovoltaic generators, which are substantially non-linear (MPP). This study examines the effectiveness of using a combination of parabolic concentrator Bi-reflector and heat exchanger as a cooling system on the performance of photovoltaic generators to get a photovoltaic/thermal (PV/T) system, and their effect on the direct current (DCDC) converter using matrix laboratory (MATLAB) simulink. The experimental tests were carried out under various temperature values and sun irradiation. The results demonstrated that the use of parabolic Bi-reflectors, to further illumine te the panels, and the use of the cooling system to absorb excess heat to get heat water, could increase and enhances performances of the photovoltaic generator.</p>

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3863
Author(s):  
Tiago Alves ◽  
João Paulo N. Torres ◽  
Ricardo A. Marques Lameirinhas ◽  
Carlos A. F. Fernandes

The effect of partial shading in photovoltaic (PV) panels is one of the biggest problems regarding power losses in PV systems. When the irradiance pattern throughout a PV panel is inequal, some cells with the possibility of higher power production will produce less and start to deteriorate. The objective of this research work is to present, test and discuss different techniques to help mitigate partial shading in PV panels, observing and commenting the advantages and disadvantages for different PV technologies under different operating conditions. The motivation is to contribute with research, simulation, and experimental work. Several state-of-the-artsolutions to the problem will be presented: different topologies in the interconnection of the panels; different PV system architectures, and also introducing new solution hypotheses, such as different cell interconnections topologies. Alongside, benefits and limitations will be discussed. To obtain actual results, the simulation work was conducted by creating MATLAB/Simulink models for each different technique tested, all centered around the 1M5P PV cell model. The several techniques tested will also take into account different patterns and sizes of partial shading, different PV panel technologies, different values of source irradiation, and different PV array sizes. The results will be discussed and validated by experimental tests.


2020 ◽  
Vol 12 (22) ◽  
pp. 9520
Author(s):  
M. Imtiaz Hussain ◽  
Jun-Tae Kim

This study summarizes the performance of a photovoltaic/thermal (PV/T) system integrated with a glass-to-PV backsheet (PVF film-based backsheet) and glass-to-glass photovoltaic (PV) cells protections. A dual-fluid heat exchanger is used to cool the PV cells in which water and air are operated simultaneously. The proposed PV/T design brings about a higher electric output while producing sufficient thermal energy. A detailed numerical study was performed by calculating real-time heat transfer coefficients. Energy balance equations across the dual-fluid PV/T system were solved using an ordinary differential equation (ODE) solver in MATLAB software. The hourly and annual energy and exergy variations for both configurations were evaluated for Cheonan City, Korea. In the case of a PV/T system with a glass-to-glass configuration, a larger heat exchange area causes the extraction of extra solar heat from the PV cells and thus improving the overall efficiency of the energy transfer. Results depict that the annual electrical and total thermal efficiencies with a glass-to-glass configuration were found to be 14.31% and 52.22%, respectively, and with a glass-to-PV backsheet configuration, the aforementioned values reduced to 13.92% and 48.25%, respectively. It is also observed that, with the application of a dual-fluid heat exchanger, the temperature gradient across the PV panel is surprisingly reduced.


2018 ◽  
Vol 204 ◽  
pp. 04007
Author(s):  
Jalaluddin ◽  
Akio Miyara ◽  
Shohei Ishikawa ◽  
Rustan Tarakka ◽  
Andi Amijoyo Mochtar

Ground source cooling system (GSCS) is promising technology to serve cooling demands of buildings. This study presents a development of an open-loop GSCS for space air conditioning at Hasanuddin University Gowa campus. Experimental study was carried-out by pumping water from well of 57 m depth and flowing the water over a heat exchanger to cool refrigerant of air conditioning (AC) unit. The performance of AC unit was investigated under actual operation with various water flowrates. The temperatures of inlet and outlet water in the heat exchanger were also measured. The system operated from 11:00 until 18:00 o’clock local time with 3 (three) flowrates such as 3.6; 6.5 and 14.3 L/min respectively. In the low flowrate, the temperature of outlet water is approximately 37 °C. However, the compressor power is also increase significantly. The coefficient of performances (COPs) of the system in average are 2.9 in the low flowrate and 3.4 in the high flowrate. Also. the result shows that the utilization of GSCS is appropriated for cooling buildings in the hot climate like Indonesia.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 516 ◽  
Author(s):  
Mustafa Atmaca ◽  
İmdat Zafer Pektemir

The temperature of a PV (photovoltaic) panel increases when it produces electricity but its electrical efficiency decreases when the temperature increases. In addition, the electrical efficiency of the PV panel is very limited. To increase the PV efficiency, the rest of the solar irradiance must be used, together with the temperature being kept at an optimum value. With this purpose, an experimental study was conducted. Firstly, two specific photovoltaic-thermal (PV/T) systems were designed. The first was the PV/T system which used only a water heat exchanger. The other one was the PV/T system that used a water and air heat exchanger. In the latter PV/T system, air passed through both the top of the PV panel and the bottom of it while water passed through only the bottom of the panel in a separate heat exchanger. In this way, the water and air absorbed the thermal energy of the panel by means of separate heat exchangers, simultaneously. In addition to the two systems mentioned above, an uncooled photovoltaic module was also designed in order to compare the systems. As a result, three different modules were designed. This study was conducted in a natural ambient environment and on days which had different climatic conditions. The thermal, electrical and overall efficiencies of each PV/T module were determined. The results were compared with the uncooled module electrical efficiency. The results showed that when water and air were used together, it was more efficient than single usage in a PV/T system. The thermal gain of the working fluids was also found to be fairly high and so, the gained energy could be used for different purposes. For example, hot air could be used in drying systems and air condition systems. Hot water could be used in hot water supply systems.


Author(s):  
Belhadj Mohammed ◽  
Boufeldja Kadri ◽  
Nasri Abdelfatah ◽  
Benlaria Ismail

Due to the highly non-linear electrical characteristics of photovoltaic generators (PVGs), the efficiency of PV systems can be improved by forcing the GPV to operate at their maximum power point (MPP). In this article, we are interested in concentrating Photovoltaic design to improve the output current of the panelwhile maintaining the DCDC boost element, after presenting the basic structure of Boost DC-DC converter, which shows the existence of a limitation on the voltage gain for this converter. In order to meet the specifications (high voltage gain and low ripple of the input current), existing structures will be presented that are able to provide a high voltage gain (Photovoltaic concentration) compared to another structure


Author(s):  
Issa Etier ◽  
Salem Nijmeh ◽  
Mohammed Shdiefat ◽  
Omar Al-Obaidy

This experimental work is looking at the properties of photovoltaic/thermal (PV-T) system, which had designed to increase the output power of the PV panel for the climate of Zarqa, Jordan. Operating temperature of the PV module has a significant impact on the performance of the PV module. However, most of the radiation energy absorbed by the PV panel is converted into heat, which is normally lost and provides no value. In order to decrease the operating temperature of the PV panel, a water cooling system with a control system had designed. Experimentally, when the PV module was operating under active water-cooling condition using the backside cooling technique, the temperature dropped significantly, which led to an increase in the electrical efficiency of solar cells by 6.86%.


1998 ◽  
Vol 24 (2) ◽  
pp. 254-258
Author(s):  
WEILI JIN ◽  
AKIO KODAMA ◽  
MOTONOBU GOTO ◽  
TSUTOMU HIROSE

Author(s):  
Y.M. Irwan ◽  
A.R. Amelia ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
Z. Syafiqah ◽  
...  

An increasing efficiency of the solar system can be improved by using hybrid cooling mechanism. This paper presents the impact of hybrid cooling mechanism on PV panel under indoor testing with varying solar intensity. Thus, the fabrication of a solar simulator for indoor testing reacts as the space solar radiation is described. The performance of PV panel which attached to a hybrid cooling mechanism compared with PV panel without cooling mechanism under variation of average solar radiation. Experimental tests were carried out for various average solar radiations by varying the number of lamps and/or the lamp-to-area distance. Without altering the spectral distribution, the characteristic of current-voltage of PV panel was analysed under average solar radiation which varied from 202 W/m<sup>2</sup> to 1003 W/m<sup>2</sup>. As the result, the PV panel with hybrid cooling system explored to generate more power output with decreasing in PV panel temperature. About 15.79 % increment of power output generated by PV panel with cooling at maximum average solar radiation. Furthermore, the PV panel temperature also can be decreased about 10.28 % respectively. The combination of DC fan and water pump as cooling mechanism plays an important role in generating efficient power output from PV panel.


Author(s):  
Tao Wang ◽  
Xuegong Hu ◽  
Dawei Tang

To solve the questions of the middle heat exchanger of space-based laser cooling system such as large heat transfer area and operating mode instability, a MC-MG (Microchannel-Microgroove) microscale heat exchanger is proposed and experimental study is carried out. The experimental results indicate that as the Reynolds number increases, the Nusselt number originally increases and then keeps constant. While adding the volumetric flow rate of distilled water in the microchannels, the total thermal resistance is first reduced and then becomes steady. With increasing the volumetric flow rate of distilled water, the total quantity of heat transfer increases first, then decreases and finally tends to be constant. The average heat transfer coefficient of the heat exchanger reaches to 1.6 × 104W/ (m2-K) and total thermal resistance is less than 0.21K/W. Therefore the solution to cooling laser with the heat exchanger is preferable.


Sign in / Sign up

Export Citation Format

Share Document